Name:

Enrolment No:

11 UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2019

Programme Name: B.Tech., APE Gas	
Course Name $\quad:$ Production Engineering	
Course Code $\quad:$ PEAU 3008	
Nos. of page(s)	$: 2$

Semester : V

Time : 03 hrs
Max. Marks : 100

SNo	Answer all the questions	Marks	CO
SECTION A			
Q 1	What is the principle of working of a desalter?	5	CO-I
Q 2	List various internal components used in two-phase separators.	5	CO-II
Q 3	Calculate a well's skin effect due to radial damage if the permeability impairment is $\mathrm{k} / \mathrm{ks}=5$ fold, the wellbore radius is 0.328 ft , drainage radius is 3000 ft and the penetration distance is 0.172 ft .	5	CO-III
Q 4	Classify Rock System and their nature based on Brinell Hardness (BHN).	5	CO-IV
SECTION B			
Q 5	Establish the design parameters for a vertical heater-treater given the following data: $\begin{aligned} & \mathrm{Q}_{\mathrm{o}}=2000 \mathrm{BOPD} ; \mathrm{P}_{\mathrm{o}}=35 \mathrm{psig} ; \mathrm{Wc}_{\text {inlet }}=15 \% ; \mathrm{Wc}_{\text {outlet }}=1 \% ; \\ & \mathrm{T}_{\mathrm{o}}=80^{\circ} \mathrm{F} ; \Upsilon_{\mathrm{o}}=34^{0} \mathrm{API} ; \Upsilon_{\mathrm{w}}=1.07 ; \mu=10 \mathrm{cp} ; \text { and } \mathrm{tr}_{\mathrm{o}}=20 \mathrm{~min} ; \end{aligned}$ Operating Temperature $=130^{\circ} \mathrm{F}$ at which $\Upsilon_{o}=34^{0} \mathrm{API}$ and $\Upsilon_{w}=1.05 ; \mu=3.676 \mathrm{cp}$. a) If $\mu_{0}<70 \mathrm{cp}$, then $\mathrm{c}_{\text {ll }}=242 \mathrm{~W}_{\mathrm{c}}^{033} \mu_{0}^{0.25}$ b) If $\mu_{0} \geq 70 \mathrm{cp}$, then $\mathrm{c}_{\text {II }}=700 \mathrm{~W}_{\mathrm{c}}^{033}$	10	CO-I
Q 6	Design the size of a horizontal separator for the following requirements: Gas - 15 MMSCFD at 0.65 specific gravity \& $\mathrm{Z}=0.86$; Oil - 1800 BPD at $34^{\circ} \mathrm{API}$; Operating Pressure \& Temperature $-800 \mathrm{psia} \& 80^{\circ} \mathrm{F}$ at which Viscosity $=0.014 \mathrm{cp}$; Retention time $=3 \mathrm{~min}$ for Droplet size of 140 micron removal; $C_{D}=0.933$ Liquid fractions $=\alpha=\beta=0.5$; Thickness of shell $=0.75$ inch.	10	CO-II
Q 7	List various types of formation damage, their common causes, and the steps taken to reduce their effects. OR A $28 \mathrm{wt} \% \mathrm{HCl}$ is needed to propagate wormholes 3 ft from a 0.328 - ft radius wellbore in a limestone formation (specific gravity 2.71) with a porosity of 0.15 . The designed injection rate is $0.1 \mathrm{bbl} / \mathrm{min}$ - ft , the diffusion coefficient is $10^{-9} \mathrm{~m}^{2} / \mathrm{sec}$, and the density of the 28% HCl is $1.14 \mathrm{~g} / \mathrm{cm}^{3}$. In linear core floods, 1.5 -pore volume is needed for wormhole breakthrough at the end of the core. Calculate the acid volume requirement using i. Daccord's model and	10	CO-III

	ii. The volumetric model.		
Q 8	Demonstrate on open hole gravel packing operations	10	CO-IV
SECTION-C			
Q 9	a. A sandstone with a porosity of 0.2 containing $10 \mathrm{v} \%$ calcite (CaCO3) is to be acidized with $\mathrm{HF} / \mathrm{HCl}$ mixture solution. A pre-flush of $15 \mathrm{wt} \% \mathrm{HCl}$ solution is to be injected ahead of the mixture to dissolve the carbonate minerals and establish a low pH environment. If the HCl pre-flush is to remove all carbonates in a region within 1 ft beyond a $0.328-\mathrm{ft}$ radius wellbore before the $\mathrm{HF} / \mathrm{HCl}$ stage enters the formation, what minimum pre-flush volume is required in terms of gallon per foot of pay zone? b. A well of 0.39 ft radius is drilled in a reservoir extending over 40 acres. The well and the reservoir properties are as follows: Average reservoir pressure: 2900 psi; Pay zone thickness: 16 ft ; Oil viscosity: 2 cp ; Formation volume factor of oil: $1.3 \mathrm{RB} / \mathrm{STB}$; Formation permeability: 50 md ; S: 5 . i. Estimate the well's theoretical stabilized productivity assuming 25% drawdown ii. How much of an increase in productivity might be expected from an acid $(\mathrm{S}=-5)$ operation for 25% drawdown?	20	CO-III
Q 10	The following data are given for a hydraulic fracturing treatment design: Reservoir area: 160 acres; Pay zone thickness: 70 ft ; Formation permeability: 1md; Young's modulus of rock: $3^{*} 10^{6}$ psi; Poison's ratio: 0.25 ; Fluid injection rate: 40 bpm ; Fluid viscosity: 1.5 cp ; Fluid efficiency $=39 \%$; Leak-off coefficient: $0: 002 \mathrm{ft} / \mathrm{min}^{1 / 2}$; Proppant density: $165 \mathrm{lb} / \mathrm{ft}^{3}$; Proppant porosity: 0.4; Final proppant concentration: 3 ppg ; Fracture half-length: $1,000 \mathrm{ft}$; Fracture height: 100 ft ; Fracture permeability $=200$ darcy; Assuming KGD fracture, estimate the following design parameters: i. Fluid volume requirement ii. Fracture conductivity iii. Proppant weight requirement iv. Propped fracture width OR The following data are given for a hydraulic fracturing treatment design: Reservoir area: 160 acres; Pay zone thickness: 70 ft ; Formation permeability: 1 md ; Young's modulus of rock: $3 * 10^{6}$ psi; Poison's ratio: 0.25 ; Fluid injection rate: 40 bpm ; Fluid viscosity: 1.5 cp ; Fluid efficiency $=39 \%$; Leak-off coefficient: $0: 002 \mathrm{ft} / \mathrm{min}^{1 / 2}$; Proppant density: $165 \mathrm{lb} / \mathrm{ft}^{3}$; Proppant porosity: 0.4; Final proppant concentration: 3 ppg ; Fracture half-length: $1,000 \mathrm{ft}$; Fracture height: 100 ft ; Fracture permeability $=200$ darcy; Assuming PKN fracture, estimate the following design parameters: i. Fluid volume requirement ii. Fracture conductivity iii. Proppant weight requirement iv. Propped fracture width	20	CO-IV

