Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Term Examination - December 2019			
SECTION A (20)			
$\begin{array}{\|l\|} \hline 1 \\ 2 \\ 3 \\ 4 \end{array}$	What are applications of natural gas in residential and commercial sectors List different valves used in CGD and their functions. Develop a diagram of knockout drum and explain in brief. Explain operational preparedness in CGD	05 05 05 05	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{CO} \\ & \mathrm{CO} \\ & \mathrm{CO} \end{aligned}$
SECTION B (40 Marks)			
$\begin{array}{\|l} \hline 5 \\ 6 \\ 7 \\ 8 \end{array}$	Examine industry specific impacts on environment due to CGD activities Describe facilities at DRS with diagram Explain advantages of CNG in detail A natural gas transmission line transports 4 million m3/day of gas from a processing plant to a compressor station site 100 km away. The pipeline can be assumed to be along a flat terrain. Determine the minimum pipe diameter required such that the maximum pipe operating pressure is limited to 8500 kPa . The delivery pressure desired at the end of the pipeline is a minimum of 5500 kPa . Assume a pipeline efficiency of 0.92 . The gas gravity is 0.60 , and the gas temperature is $18^{\circ} \mathrm{C}$. Use the Weymouth equation and panhandle A equation, considering a base temperature $=15^{\circ} \mathrm{C}$ and base pressure $=101 \mathrm{kPa}$. The gas compressibility factor $\mathrm{Z}=$ 0.90 . i) Weymouth Equation ii)Panhandle A Equation and conclude your result $Q=3.7435 \times 10^{-3} E\left(\frac{T_{b}}{P_{b}}\right)\left(\frac{P_{1}^{2}-e^{s} P_{2}^{2}}{G T_{f} L_{e} Z}\right)^{05} D^{26 \epsilon \theta}$	$\begin{aligned} & \hline 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{CO} 2 \\ & \mathrm{CO} 2 \\ & \mathrm{CO1} \\ & \hline \end{aligned}$

	$Q=4.5965 \times 10^{-3} E\left(\frac{T_{b}}{P_{b}}\right)^{1.08 \%}\left(\frac{P_{1}^{2}-e^{s} P_{2}^{2}}{G^{0839} T_{f} L_{e} Z}\right)^{05394} D^{26182}$		
SECTION-C			
9 10	Discuss design aspects of steel grid network in detail Natural gas is supplied through a low-pressure distribution pipe 1200 m in length with an initial pressure 50 mbar (gauge) at A and a final pressure of 30 mbar at B . It is required to increase the flow rate by $20 \%, 40 \%, 60 \%, 80 \%$ and 100% by reinforcing the existing pipe with parallel Pipe of the same diameter as the original pipe. What length of reinforcement pipe must be installed if the pressure drop is to remain unchanged? Plot a graph of capacity vs reinforcement and conclude your results. Or Determine flow rate in each pipe by using Hardy Cross Method. Use maximum three iterations.	20	CO3 CO 4 CO4

