Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2019

Programme Name: M. Tech (PLE) Semester : III
Course Name : Defect Assessment & Maintenance in Pipelines II Time : 03 hrs

Course Code : CHPL 8001 Max. Marks : 100

Nos. of page(s) : 3

Instructions:

SECTION A

S. No.		Marks	CO
Q 1	Mention 10 instruments required for checking coating condition during inspection at site.	4	CO 2
Q 2	Factors that contribute for increase in corrosion allowance.	4	CO3
Q 3	Procedure for determination of maximum allowable longitudinal extent of corrosion	4	CO 5
Q 4	What are the various methods used for mitigation of AC/DC interference? Explain any two methods.	4	CO 3
Q 5	Illustrate 2 types of heat treatments for changing grain structure of alloy and results obtained with each process.	4	CO 1
	SECTION B		
Q 6	Describe the various factors effecting the selection of material for use of industrial piping or for any equipment construction. What is carbon equivalent content& how weld ability is affected?	10	CO 1
Q 7	How do you carry out the design of CP system for boosting station of a cross-country pipeline?	10	CO 3
Q 8	 Write short notes on any two of the following: a) Evaluation methods for determining length & depth of a defect as per ASME B 31G-2009. b) What is the need for Cathodic isolation of pipeline? Describe various types of isolation methods used for isolation of pipeline. e) Various steps for ECDA (External corrosion direct assessment) 	10	CO 3
Q 9	Write short notes on following: a. How to achieve near metal white surface blasting as per NACE specification No. 2/SSPC-SP 10?	10	CO2

	h Mantion in brief about various arrays comied out identify coating defects		CO 2/			
	b. Mention in brief about various surveys carried out identify coating defects.c. Write down eight codes and standards used in repair & maintenance of cross		CO 2/			
	c. Write down eight codes and standards used in repair & maintenance of cross country pipelines.		CO 4			
	OR					
	Write short notes on following:		CO 3/			
	d. Is it possible to protect above ground pipelines / structures by Cathodic		CO 3/			
	Protection, if not, why?		CO 6/			
	e. Classification of various defects as per POF.					
	f. What are the advantages of back fill material in anode beds & steps required		CO 2			
	in maintenance of anode beds?					
	SECTION-C					
0.10		• •	T ~ ~ =			
Q 10	Explain Microbiologically Influenced corrosion, classification of microorganisms,	20	CO 5			
0.11	BIO FOULING observed in pipelines & Prevention of MIC.		<u> </u>			
Q 11	Several metal loss profiles of a corroded pipe is shown in the following sketch to					
	examine the corroded pit interaction whether separate or interacting.					
	L_6					
	L_2					
	$\begin{pmatrix} d_2 \end{pmatrix}$					
	X_1 A_4					
	d_1					
	a_1 $C = \pi D$					
		20				
		20				
			CO6			
	$L_1 \longrightarrow X_3 \stackrel{ \leftarrow L_3 \rightarrow }{\longleftarrow} L_5 \longrightarrow$					
	\leftarrow $L_7 L_7 $					
<u> </u>			1			

Comple	ete the following	ng table and show ir	nteraction among all	l the corrosion pits	
	Overall flaw	Separate or	Conditions *	Maximum Depth	Con
	length	Interacting	Conditions	waxiiiidiii Deptii	Con
		WATE TO !	0.0.11 11.1.1.1	1	1
		*X =Distance o	t tull wall thickne	ess between metal	loss
		(corroded region	`		