Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019			
Course: Mathematical Physics II Program: B.Sc. Physics (H) Course Code: PHYS 2001 Semester: III Time 03 hrs. Max. Marks: 100 Instructions: 1. The question paper has three sections: Section A, B and C. All sections are compulsory. 2. Section B and C have internal choices.			
SECTION A			
S. No.		Marks	CO
Q 1	Define Parseval's Formula for half-range sine series and cosine series.	4	CO1
Q 2	Outline the steps to solve second order linear differential equation when $x=0$ is an ordinary point.	4	CO 2
Q 3	Describe how the generating function of Legendre's polynomial emerged from Physics based potential estimation concept.	4	CO 4
Q 4	Evaluate the following integral using gamma function $\int_{0}^{\infty} \sqrt[4]{x} e^{-\sqrt{x}} d x$	4	CO1
Q 5	Convert the following Hermite polynomial into an ordinary polynomial $P(x)=2 H_{4}(x)+3 H_{3}(x)-H_{2}(x)+5 H_{1}(x)+6 H_{0}$	4	CO 2
SECTION B			
Q 6	If $u=\frac{5 x^{3} y^{4}}{z^{5}}$ and errors in each $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be 0.001 then compute the relative maximum error in it when $x=1, y=1, z=1$.	10	CO1
Q 7	Using the Rodrigue's formula for Legendre function, prove that $\int_{-1}^{+1} x^{m} P_{n}(x) d x=0$ where m, n are positive integers and $m<n$.	10	CO 2

Q 8	Show that Bessel's function $J_{n}(x)$ is an even function when n is even and is odd function when n is odd.	10	C01
Q 9	Approximate the following function using Fourier series $f(x)=\left\{\begin{array}{cr} -\pi & -\pi<x<0 \\ x & 0<x<\pi \end{array}\right\}$ and deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots \ldots \ldots \ldots \ldots \ldots \ldots=\frac{\pi^{2}}{8}$ OR Using half-range sine series prove that for $0<x<\pi$ $x(\pi-x)=\frac{8}{\pi}\left[\frac{\sin x}{1^{2}}+\frac{\sin 3 x}{3^{2}}+\frac{\sin 5 x}{5^{2}}+\cdots \ldots \ldots \ldots \ldots .\right]$	10	CO2
SECTION-C			
Q 10	A tightly stretched string with fixed end points $x=0$ and $x=\pi$ is initially at rest in its equilibrium position. If it is set vibrating by giving to each of its points an initial velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0}=0.03 \sin x-0.04 \sin 3 x$ then determine the displacement $y(x, t)$ at any point of string at any time t.	20	CO 3
Q 11	Solve the following partial differential equation $\frac{\partial^{2} f}{\partial x^{2}}-2 \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}=0$ by the method of separation of variables. OR Solve the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ on a rectangle in the $x y$-plane with the following boundary conditions $u(x, 0)=0$, $u(x, b)=0, u(0, y)$ and $u(a, y)=f(y)$, parallel to y-axis.	20	CO4

