Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Mathematical Physics II Program: B.Sc. Physics (H) Course Code: PHYS 2001 Semester: III Time 03 hrs. Max. Marks: 100

## Instructions: 1. The question paper has three sections: Section A, B and C. All sections are compulsory. 2. Section B and C have internal choices.

|        | SECTION A                                                                                                                                                                       |       |     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| S. No. |                                                                                                                                                                                 | Marks | CO  |
| Q 1    | Define Parseval's Formula for half-range sine series and cosine series.                                                                                                         | 4     | CO1 |
| Q 2    | Outline the steps to solve second order linear differential equation<br>when $x = 0$ is an ordinary point.                                                                      | 4     | CO2 |
| Q 3    | Describe how the generating function of Legendre's polynomial emerged from<br>Physics based potential estimation concept.                                                       | 4     | CO4 |
| Q 4    | Evaluate the following integral using gamma function<br>$\int_{0}^{\infty} \sqrt[4]{x} e^{-\sqrt{x}} dx$                                                                        | 4     | CO1 |
| Q 5    | Convert the following Hermite polynomial into an ordinary polynomial<br>$P(x) = 2H_4(x) + 3H_3(x) - H_2(x) + 5H_1(x) + 6H_0$                                                    | 4     | CO2 |
|        | SECTION B                                                                                                                                                                       | 1     |     |
| Q 6    | If $u = \frac{5x^3y^4}{z^5}$ and errors in each x, y, z be 0.001 then compute the relative maximum error in it when $x = 1, y = 1, z = 1$ .                                     | 10    | CO1 |
| Q 7    | Using the Rodrigue's formula for Legendre function, prove that<br>$\int_{-1}^{+1} x^m P_n(x) dx = 0,$ where <i>m</i> , <i>n</i> are positive integers and <i>m</i> < <i>n</i> . | 10    | CO2 |

| Q 8  | Show that Bessel's function $J_n(x)$ is an even function when n is even and is odd                                             |    |     |
|------|--------------------------------------------------------------------------------------------------------------------------------|----|-----|
|      | function when $n$ is odd.                                                                                                      | 10 | CO1 |
| Q 9  | Approximate the following function using Fourier series                                                                        |    | CO2 |
|      | $f(x) = \begin{cases} -\pi & -\pi < x < 0 \\ x & 0 < x < \pi \end{cases}$                                                      |    |     |
|      | and deduce that                                                                                                                |    |     |
|      | $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots \dots \dots \dots = \frac{\pi^2}{8}$                                    | 10 |     |
|      | OR                                                                                                                             | 10 |     |
|      | Using half-range sine series prove that for $0 < x < \pi$                                                                      |    |     |
|      | $x(\pi - x) = \frac{8}{\pi} \left[ \frac{\sin x}{1^2} + \frac{\sin 3x}{3^2} + \frac{\sin 5x}{5^2} + \dots \dots \dots \right]$ |    |     |
|      | SECTION-C                                                                                                                      |    |     |
| Q 10 | A tightly stretched string with fixed end points $x = 0$ and $x = \pi$ is initially at rest in                                 |    |     |
|      | its equilibrium position. If it is set vibrating by giving to each of its points an initial                                    | 20 | CO3 |
|      | velocity                                                                                                                       |    |     |
|      | $\left(\frac{\partial y}{\partial t}\right)_{t=0} = 0.03  \sin x - 0.04  \sin 3x$                                              |    |     |
|      | then determine the displacement $y(x, t)$ at any point of string at any time t.                                                |    |     |
| Q 11 | Solve the following partial differential equation                                                                              |    |     |
|      | $\frac{\partial^2 f}{\partial x^2} - 2\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = 0$                       |    |     |
|      | by the method of separation of variables.                                                                                      |    |     |
|      | OR                                                                                                                             |    |     |
|      | Solve the Laplace equation                                                                                                     | 20 | CO4 |
|      | $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$                                                    |    |     |
|      | on a rectangle in the $xy$ –plane with the following boundary conditions $u(x, 0) = 0$ ,                                       |    |     |
|      | u(x,b) = 0, $u(0,y)$ and $u(a,y) = f(y)$ , parallel to y-axis.                                                                 |    |     |