Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

SECTION A

Course: Solutions, Phase Equilibrium, Condt., Electro-Chem & Functional Group Organic Chemistry II Semester: III

Program: BSc. Hons. Elective (Common for BSc. Hons Physics and BSc. Hons Mathematics) Time 03 hrs.

Course Code: CHEM 1003

Instructions: Attempt all the questions.

Max. Marks: 100

S. No.		Marks	CO
Q 1	Differentiate between anomers and epimers.	4	CO1
Q 2	Arrange the amines given below, based on increasing basicity. Also, explain the reason for this trend. $ \begin{array}{c} & & \\ & $	4	CO2
Q 3	What is mutarotation ? Describe in context of glucose.	4	CO2
Q 4	Calculate the single electrode potential for copper metal in contact with 0.10 M Cu^{2+} solution. E^0 for copper is 0.34 volt.	4	CO1
Q 5	Explain the following: (a) Effect of particle size on solubility (b) Effect of rise in temperature on solubility of a substance	4	CO1
	SECTION B		
Q 6	Arrange the following compounds in increasing order of basic strength: C ₆ H ₅ NH ₂ , C ₆ H ₅ N(CH ₃) ₂ , (C ₆ H ₅) ₂ NH,CH ₃ NH ₂	8	CO2

Q 7	Write a detailed, stepwise mechanism for the reaction given below		
	$R^{CI} \xrightarrow{O}_{NH_2NH_2} R^{NH_2}$ O OR	8	CO3
	Comment on the following:(a) An ionic solid dissolves in water when hydration energy is more than the lattice energy.(b) Insolubility of glucose in benzene		
Q 8	Write a short note on Perkin condensation for the synthesis of an α,β -unsaturated aromatic acid.	8	CO3
Q 9	Explain the following terms used in the phase rule study of heterogeneous equilibria: (a) Transition point, (b) Congruent melting point, (c) Eutectic point, (d) Invariant system. OR How will you differentiate between the amines by using a Carbylamine test ?	8	CO1
Q 10	Calculate the molar and equivalent conductivities at infinite dilution of the salt KOOC.COONa. Given the molar ionic conductivities at infinite dilution of Ox^{2-} , K ⁺ , and Na ⁺ as 148.2, 50.1, and 73.5 S cm ² mol ⁻¹ , respectively.	8	CO3
	SECTION-C		
Q 11	(a) Identify the reactions 'a' and 'b' given in Figure. Write a stepwise mechanism for the formation of products in these reactions. a. $\underset{R}{\overset{O}{\longrightarrow}}_{NH_2} \xrightarrow{1. X_2, \text{ base, } H_2O}_{2. \Delta} \xrightarrow{R-NH_2} (X = \text{halogen})$ b. $\underset{CI}{\overset{O}{\longrightarrow}}_{NH_2} + \underset{CI}{\overset{O}{\longrightarrow}} \xrightarrow{H_2O}_{CH_3CH_2OCH_2CH_3} \xrightarrow{O}_{NH}$	10 + 10	CO1 CO2
	Figure		

	(b) A conductivity cell filled with 0.1 M solution of potassium chloride at 25 0 C has a measured resistance of 24.96 Ω . Calculate the cell constant if the conductivity <i>K</i> for 0.1 M solution of KCl is 0.012 S cm ⁻¹ and conductivity with water $K = 7.5 \times 10^{-8}$ S cm ⁻¹ is used to make up the solutions. When the cell is filled with a 0.01 M solution of acetic acid, the cell resistance is 1982 Ω . Calculate the molar conductivity of acidic acid at this concentration.		
Q 12	 (a) Write a detailed mechanism for both the acid and base catalyzed hydrolysis of the ester given below (b) What is a reversible electrode? What type of reversible electrodes are commonly known? Explain with examples. 		
	Or	10 +	CO2
	(a) Explain the basic principles of the following by giving suitable examples:a. Ninhydrin testb. Fehling's test	10	CO3
	(b) What are concentration cells? Derive an expression for the EMF of a concentration cell. Calculate the potential developed on a copper electrode at 25 0 C when it is dipped in a 0.1 M solution of copper sulphate. The standard electrode potential of Cu/CuSO _{4 (s)} system is 0.337 volts at 25 0 C.		