Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Somester Examination December 2010

End Semester Examination, December 2019

Course: Physical Chemistry III Program: B.Sc. (H) Chemistry Course Code: CHEM 2003 Semester: III Time 03 hrs. Max. Marks: 100

Instructions: Read the instructions given below carefully:

- 1. All questions are compulsory.
- 2. Internal choice is given in question number 10 and 12.

SECTION A

S. No.		Marks	СО
Q 1	 How many phases and components are present in each of the following systems: (i) An aqueous solution of a salt (NaCl) (i) CaCO₃ (s) is in equilibrium with CaO (s) and CO₂ (g) 	4	CO1
Q 2	Determine the phase rule for Solid↔Liquid equilibrium assuming that vapour is absent.	4	CO1
Q 3	What do you understand by a eutectic mixture?	4	CO1
Q 4	Predict whether silver react with 1 N sulphuric acid to give out hydrogen gas or not. Given $E^{0}_{Ag+/Ag} = 0.80V$. Justify your answer.	4	CO3
Q 5	Calculate the standard emf of a cell which involve the following reaction $Cu + 2Ag^{+} \longrightarrow Cu^{2+} + 2Ag$ Given $E^{0}_{Cu/Cu2+} = -0.34V$ and $E^{0}_{Ag/Ag+} = -0.80V$.	4	CO3
	SECTION B		
Q 6	Draw and Explain neat labelled phase diagram (TC diagram) for two component system.	8	CO2
Q 7	Define degrees of freedom of a system and explain giving examples. Is it possible to have a quadruple point (point having P=4) in the phase diagram of a one component system? Justify your answer.	8	CO2
Q 8	Calculate emf of the cell: Ca/Ca ²⁺ (a = 0.800) // Ag ⁺ (a = 0.200) / Ag at 25 ⁰ C. Given $E^{0}_{Ca2+/Ca} = -2.87V$ and $E^{0}_{Ag+/Ag} = 0.80V$.	8	CO3

Q 9	Discuss the construction of Standard Calomel electrode with its redox reactions.	8	CO3		
Q 10	The normal boiling temperature of toluene is 450 K at vapour pressure of 1 atm. The vapour pressure of liquid benzene is 1×10^5 Pa at 30°C. Calculate $\Delta H_m^{vaporization}$ and $\Delta S_m^{vaporization}$ of toluene. (Given: 1 atm = 101325 Pa; R= 8.314J/mol/K) OR	8	CO2		
	Construct an electrolytic cell. Write the reactions taking place at each electrode.				
SECTION-C					
Q 11	 a) Discuss the graph of potentiometric titration for a precipitation reaction. b) What is the difference between electromotive force and electrode potential? How they are measured? c) Draw and discuss the phase diagram of CO₂ system. 	5 5 10	CO3 CO3 CO2		
Q 12	a) A cell is prepared by dipping an iron rod in 1M FeSO4 solution and a zinc rod in 1M ZnSO4 solution. Write down half-cell reactions, overall reaction, standard emf of cell and cell representation. Given $E^{0}_{Fe2+/Fe} = -0.44V$ and $E^{0}_{Zn2+/Zn} = -0.76V$.				
	b) Draw a well labelled triangular phase diagram of a three component system and explain the various regions in it.	10			
		10 10	CO3 CO2		
	 OR a) Consider a cell Pt / H₂ (1atm) / solution of unknown pH // Hg₂Cl₂(s) KCl(s) / Hg. If the emf of this cell is 0.366 volt, what would be the pH of the given solution? (Given E_{SCE} = 0.242 volt). b) Derive the phase rule for a non-reactive system. 	10	002		