Name: Enrolment No:			
Course: Electric circuit analysis Semester: III Program: B.tech. Electrical Time 03 hrs. Course Code: EPEG 2009 Max. Marks: $\mathbf{1 0 0}$ No. of pages - 3 Instructions: All questions are compulsory			
SECTION A			
S. No.		Marks	CO
Q 1	An impedance function has the pole zero pattern shown in figure. What are the elements it composed?	5	CO3
Q. 2	In the circuit shown in figure, the power consumed in the resistance R is measured when one source is acting at a time, these values are $18 \mathrm{~W}, 50 \mathrm{~W}$ and 98 W . When all the sources are acting simultaneously, what would be the maximum and minimum values of power in R.	5	CO1
Q. 3	A source of angular frequency of $1 \mathrm{rad} / \mathrm{s}$ has a source impendence consisting of a 1Ω resistance in series with a 1 H inductance. Find out the load, which will obtain maximum power transfer.	5	CO2
Q. 4	The current $\mathrm{i}(\mathrm{t})$ through a 10 ohm resistor in series with an inductance is given by $\mathrm{i}(\mathrm{t})=3+4 \sin \left(100 \mathrm{t}+45^{\circ}\right)+4 \sin \left(300 \mathrm{t}+60^{\circ}\right)$ Amperes. Find the RMS value of the current and the power dissipated in the circuit.	5	CO1

Q. 5	Find the voltage V_{x} in the network shown in figure.	10	CO2
Q. 6	In the network of figure, find V_{2} which results in zero current through the 4Ω resistor.	10	CO 3
Q. 7	Realize the given function in FOSTER I form: $Y(s)=\frac{(s+2)(s+5)}{s(s+4)(s+6)}$	10	CO5
Q. 8	For the given denominator polynomial of a network function, verify the stability of the network using Routh criteria. $P\{s)=s^{5}+12 s^{4}+45 s^{3}+60 s^{2}+44 s+48$.	10	CO5
	SECTION-C		
Q . 91	Find the Y-parameter for the network shown in figure. Calculate the ABCD parameters for the block A and B separately and then using these results, calculate the ABCD parameters of the whole circuit shown in the figure. Prove any formula used.		CO4

Q. 10 For the circuit shown in the figure construct a tree in which 10 ohm and 20ohm are in

