
Name:		JPES			
Enrolment No: UNIVERSITY WITH A PURPOSE		WITH A PURPOSE			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES					
End Semester Examination, December 2019 Course: Electric circuit analysis Semester: III					
Program: B.tech. Electrical Time 03 hrs.					
		Max. Marks: 100			
No. of pages - 3 Instructions: All questions are compulsory					
SECTION A					
S. No.		Marks	СО		
Q 1	An impedance function has the pole zero pattern shown in fig				
Q I	elements it composed?	are. What are the			
	ju ^o 🕈				
	× 0	5	CO3		
	·	5	CO3		
	6				
	× 0				
Q.2	In the circuit shown in figure, the power consumed in the resista	nce R is measured			
2	when one source is acting at a time, these values are 18 W, 50 W a	nd 98 W. When all			
	the sources are acting simultaneously, what would be the maximum and minimum values of power in R. E_1 E_2 E_3				
		5	5 CO1		
	Resistive Network -	2			
Q.3	A source of angular frequency of 1 rad/s has a source impendence consisting in series with a 1H inductance. Find out the load, which will obtain maxim		CO2		
Q.4	The current i(t) through a 10 ohm resistor in series with an inductation	nce is given by			
	$i(t) = 3 + 4 \sin (100t + 45^{\circ}) + 4 \sin (300t + 60^{\circ})$ Amperes. Find the RMS value of the current and the power dissipated in the circuit.		CO1		
SECTION B					

Q.5	Find the voltage V_x in the network shown in figure.		
	$7 A + V_{x} - $ $7 A + V_{x} - $ $7 A + V_{x} - $ $6 \Omega + 4V_{x}$	10	CO2
Q.6	In the network of figure, find V ₂ which results in zero current through the 4 Ω resistor. $5\Omega \neq 0^{\circ} V \xrightarrow{4\Omega}_{j2\Omega}_{j2\Omega}_{j2\Omega}_{-$	10	CO3
Q.7	Realize the given function in FOSTER I form: $Y(s) = \frac{(s+2)(s+5)}{s(s+4)(s+6)}$	10	CO5
Q.8	For the given denominator polynomial of a network function, verify the stability of the network using Routh criteria. P $\{s\} = s^5+12s^4+45s^3+60s^2+44s+48$.	10	CO5
	SECTION-C		
Q .91	Find the Y-parameter for the network shown in figure. $ \begin{array}{c} $		CO4

