

Q 6	For the network shown in Fig. (3) determine the ABCD parameters Fig. (3)	10	CO2
Q 7	Find the transfer ratio $\left(\frac{V_{2}}{V_{1}}\right)$ of the network shown in Fig. (4), Fig. (4)	10	CO 3
Q 8	Attempt both the parts: (a) In the tree link graph of Fig. (5), develop the fundamental cut-set matrix and equilibrium equations using nodal analysis. Fig. (5) (b) Figure (6) represents a graph of a network. Show the total number of tree, twigs and links. (4) Fig. (6)	10	CO4

SECTION-C (40 Marks)			
Q 9	Attempt both the parts: (A) Find the open circuit driving point impedance at terminals 1-1' of the ladder work shown in Figure (7). Fig. (7) (B) Determine the load current using Millman's theorem. Network shown in Fig. (8) Fig. (8)	10+10	$\begin{gathered} \mathrm{CO}, \\ \mathrm{CO}, \end{gathered}$
Q 10	An impedance function is given by $Z(S)=\frac{\mathrm{S}(S+2)(\mathrm{S}+5)}{(\mathrm{S}+1)(\mathrm{S}+4)}$ Find the R-L representation of (a) Foster- I and II forms (b) Cauer -I and II forms	20	CO4

