Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019			
Course: $\quad \begin{aligned} & \text { Digital System Design } \\ & \text { Program: } \quad \text { B.Tech ECE }\end{aligned}$ Course Code: \quad ECEG 2028	Digital System Design B.Tech ECE Code: ECEG 2028	Semester: III Time: 03 hrs. Max. Marks: 100	
Instructions: All diagrams to be drawn by Pencil			
S. No.	QUESTION	Marks	CO
SECTION A		5x4=20	
1.	Realize through NAND gates after simplification in K-Map for the function $\mathrm{f}_{1}(\mathrm{x}, \mathrm{y}$, $\mathrm{z})=\sum(0,1,25,6)$	4	CO1
2.	What are the advantages of PLDs over fixed function ICs?(OR) Explain about registers in Digital logic design.	4	CO2
3.	Distinguish between latch and Flip Flop.	4	CO3
4.	What are the various methods used for triggering flip-flops? Explain with examples.	4	CO4
5.	Write about Emitter coupled logic Gate with a neat diagram.	4	CO5
SECTION B		$4 \times 10=40$	
6.	Realize a Boolean function $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(12,3,6,7,12,15)$ using Multiplexer.	10	CO 2
7.	Convert J-K flip-Flop into D-Flip Flop	10	CO 3
8.	Design a shift register in which all the inputs are fed in parallel and outputs are collected in serial.	10	CO4
9.	Realize functions $\mathrm{F}_{1}=\left(\mathrm{AB}+\mathrm{AC}+\mathrm{AB}^{\prime} \mathrm{C}\right), \mathrm{F}_{2}=\left(\mathrm{AB}+\mathrm{B}^{\prime} \mathrm{C}\right)^{\prime}$ and $\mathrm{F}_{3}=\mathrm{AB}^{\prime}+\mathrm{C}$ using PLA. (OR) Explain about the four types of Shift Registers.	10	CO5
SECTION B		$2 \times 20=40$	
10.	(a)Design a sequential circuit for the below state diagram fig 1 using T- flip flops (b)Implement Full Adder operation using Multiplexer.	$\begin{gathered} 15 \\ 5 \\ \hline \end{gathered}$	CO4

	fig 1		
11.	(a)Design a 4 bit universal shift register and draw the circuit with the given mode of operation table. (b) Design a combinational circuit which give the display of the digits $0-9$ and the LEDs should glow according to the binary input fed to the circuit inputs. (OR) (c) Design a 16×1 Multiplexer using 4×1 Multiplexers only and illustrate the methodology to convert 16 x 1 Mux to four 4 x 1 Mux. (d)Design a decimal BCD Counter using JK Flip Flops.	10	$\begin{gathered} \mathrm{CO5} \\ \& \\ \mathrm{CO} \end{gathered}$

