Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2019

Program: B.Tech Civil Engineering with spl. in infrastructure development. Course: MATHEMATICS - 3 Course Code: MATH 2004 Semester: III Time 03 hrs. Max. Marks: 100

	SECTION A					
S. No.	(Answer all the questions)	Marks	СО			
Q 1.	Find $L\{F(t)\}$ where $F(t) = \begin{cases} \sin(t - \frac{2\pi}{3}), t > \frac{2\pi}{3} \\ 0, t < \frac{2\pi}{3} \end{cases}$	4	CO1			
Q 2.	Let $A, B \subseteq R^2$ where $A = \{(x, y): y = 2x + 1\}, B = \{(x, y): y = 3x\}, C = \{(x, y): y = x - 7\}.$ Determine (i) $A \cap B$ (ii) $B \cap C$.	4	CO2			
Q 3.	Consider the "division" relation of $S = \{1,2,3,4,6,9\}$. Draw the Hasse diagram.	4	CO2			
Q 4.	Prove that in a group <i>G</i> , inverse of any element is unique.	4	CO3			
Q 5.	Consider the following graph: $A \rightarrow C$ $D \rightarrow C$ $E \rightarrow F$ Find (a) All simple paths from A to F (b) All trails from A to F. SECTION B	4	CO4			
	SECTION B (Answer all the questions. Q 9 has internal choice)					
Q 6.	Let $Z(u_n) = U(z)$, show that $Z(a^{-n}u_n) = U(az)$. Also prove that (i) $Z(\cos n\theta) = \frac{z(z-\cos \theta)}{z^2-2z\cos \theta+1}$ (ii) $Z(\sin n\theta) = \frac{z\sin \theta}{z^2-2z\cos \theta+1}$.	10	CO1			

Q 7.	Define isomorphic graphs. Find whether the two graphs G and H given below are isomorphic or not.		
		10	CO4
Q 8.	 In a survey of 120 people, it was found that 65 read <i>Newsweek</i> magazine, 45 read <i>Time</i>, 42 read <i>Fortune</i>, 20 read both <i>Newsweek</i> and <i>Time</i>, 25 read both <i>Newsweek</i> and <i>Fortune</i>, 15 read both <i>Time</i> and <i>Fortune</i>, 8 read all three of them. (a) Find the number of people who read at least one of the three magazines. (b) Fill in the correct number of people in each of the eight regions of the Venn diagram given below where <i>N</i>, <i>T</i> and <i>F</i> denote the set of people who read <i>Newsweek</i>, <i>Time</i> and <i>Fortune</i> respectively. 	10	CO2
Q 9.	Let G be a group. If $a, b \in G$ such that $a^4 = e$, the identity element of G and $ab = ba^2$, prove that $a = e$. (OR) Let Q be the set of positive rational numbers which can be expressed in the form $2^a 3^b$, where a and b are integers. Prove that the algebraic structure $(Q, °)$ is a group where	10	CO3
	° is multiplication operator. SECTION-C (Answer all the questions, O 11A, O 11B have internal choice)		
Q 10A.	(Answer all the questions. Q 11A-Q 11B have internal choice) Solve $y''' + 2y'' - y' - 2y = 0$, $y(0) = y'(0) = 0$ and $y''(0) = 6$ using Laplace	10	CO1

Q 10B.	Find the finite Fourier cosine transform of $F(x) = \left(1 - \frac{x}{\pi}\right)^2$.	10	CO1
Q 11A.	Prove that the set $\{0,1,2,3,4\}$ is a finite abelian group of order 5 under addition modulo 5 as composition.		
	(OR)	10	CO3
	If <i>a</i> , <i>b</i> are arbitrary elements of a group G, show that $(ab)^2 = a^2b^2$ if and only if G is abelian.		
Q 11B.	If H_1 and H_2 are two subgroups of a group G, then prove that $H_1 \cap H_2$ is also a subgroup of G.		
	(OR)	10	CO3
	Prove that the order of each subgroup of a finite group G is a divisor of the order of the group G.		