	01	m	Δ	•
1.4	α		•	•

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Mathematics III

Program: B.Tech ASE & ASE+AVE

Course Code: MATH 2009

Semester: III Time 03 hrs.

Max. Marks: 100

Instructions: All questions are compulsory. Question number 11 in section C has internal choice.

				SEC	TION A				
S. No.								Marks	CO
Q 1	With usual	notations	, Prove that Z	$\Delta^n \left(\frac{1}{x}\right) = (-$	$-1)^n \frac{n!}{x(x+h)}$	$\frac{h^n}{\dots(x+nh)}$		4	CO3
Q 2	Use Simpson's 3/8 rule to evaluate $\int_0^{\pi} \frac{\sin^2 x}{(5+4\cos x)} dx$, if $f(0) = 0$, $f(\frac{\pi}{6}) = 0.02954$, $f(\frac{\pi}{3}) = 0.10714$, $f(\frac{\pi}{2}) = 0.2$, $f(\frac{2\pi}{3}) = 0.25$, $f(\frac{5\pi}{6}) = 0.16277$, $f(\pi) = 0$.				4	CO4			
Q 3	Express $f(x)$	$x)=2x^3$	$-3x^2 + 3x$	- 10 in fac	torial notatio	n. Hence, fii	$\mathrm{ad}\ \Delta^3 f(x).$	4	CO3
Q 4	Use Lagran following ta	-	od of interpo	olation to fir 6 13	nd the value of 9	1	= 10 from the 1 6	4	CO4
Q 5	Apply New	ton's forn	nula to find t	he value of	$(30)^{1/5}$.			4	CO2
				SEC	TION B			<u> </u>	
Q 6	Using Euler $\frac{dy}{dx} = \frac{y - x}{\sqrt{xy}} \text{ at}$			proximate va	alue of y at x	= 1.5 taking	gh = 0.1 given	10	CO4
Q 8			method, find three decima		between 0 a	nd 1 of the	equation e^{-x} –	10	CO2
Q 9	which the ro	od has tur	-	ous values of	f time t (second	onds). Calcul	adians) through late the angular 1.0 3.20	10	CO3
Q 10	By means of from the foldonian x $f(x)$			fference for 7 294	mula, find th 10 900	e values of <i>f</i> 11 1210	13 2028	10	CO3

	SECTION-C		
Q11(a)	A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially in the equilibrium position. It is set vibrating by giving to each of its points Q velocity of $v_0 sin^3 \frac{\pi x}{l}$. Find the displacement $y(x, t)$.	10	
(b)	If $F(D,D')z = f(x,y)$ is a linear homogeneous partial differential equation, where $F(D,D')$ is a homogeneous function of D and D' of degree n , then prove that the particular integral of the equation will be $z = \frac{1}{(D-mD')} f(x,y) = \int f(x,c-mx) dx$	10	CO1
Q11(a)	A laterally insulted bar of length l has its ends A and B maintained at 0° C and 100° C respectively until steady state conditions prevail. If the temperature at B is suddenly reduced to 0° C and kept so while that of A is maintained at 0° C, find the temperature at a distance x from A at any time t .	10	
(b)	Find the solution of $(D^3 - 7DD'^2 - 6D'^3)z = x^2 + xy^2 + y^3 + \cos(x - y)$	10	
Q12(a)	Apply the Runge-Kutta method of fourth order to find an approximate value of y at $x = 0.2$ if $\frac{dy}{dx} = x + y^2$, given that $y = 1$ when $x = 0$ in steps of $h = 0.1$.	10	CO4
Q12(b)	Use Crout's method to solve following system of equations: x + 2y + z = 4 $2x - 3y - z = -3$ $3x + y + 2z = 3$	10	CO4