

SECTION-C

Q11(a) (b)	A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in the equilibrium position. It is set vibrating by giving to each of its points Q velocity of $v_{0} \sin ^{3} \frac{\pi x}{l}$. Find the displacement $y(x, t)$. If $F\left(D, D^{\prime}\right) z=f(x . y)$ is a linear homogeneous partial differential equation, where $F\left(D, D^{\prime}\right)$ is a homogeneous function of D and D^{\prime} of degree n , then prove that the particular integral of the equation will be $z=\frac{1}{\left(D-m D^{\prime}\right)} f(x, y)=\int f(x, c-m x) d x$ OR	10 10	CO1
Q11(a) (b)	A laterally insulted bar of length l has its ends A and B maintained at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively until steady state conditions prevail. If the temperature at B is suddenly reduced to $0^{\circ} \mathrm{C}$ and kept so while that of A is maintained at $0^{\circ} \mathrm{C}$, find the temperature at a distance x from A at any time t. Find the solution of $\left(D^{3}-7 D D^{\prime 2}-6 D^{\prime 3}\right) z=x^{2}+x y^{2}+y^{3}+\cos (x-y)$	10 10	
Q12(a)	Apply the Runge-Kutta method of fourth order to find an approximate value of y at $x=0.2$ if $\frac{d y}{d x}=x+y^{2}$, given that $y=1$ when $x=0$ in steps of $h=0.1$.	10	CO4
Q12(b)	Use Crout's method to solve following system of equations: $\begin{gathered} x+2 y+z=4 \\ 2 x-3 y-z=-3 \\ 3 x+y+2 z=3 \end{gathered}$	10	CO4

