Name:

Enrolment No:

Time: 03 hrs.

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Term Examination – December 2019 E Semester: III

Program: M.Tech PLE Course: Pipeline Network Analysis Code: CHPL 8004 Max Marks :100

	Section A (20)		
1	Calculate the gravity of a natural gas mixture consisting of 84% methane, 10% ethane, and 6% propane. From the gas gravity, calculate the pseudo-critical temperature and pseudo-critical pressure for this natural gas mixture	05	CO1
2	Develop a diagram of facilities at DRS	05	CO5
3	Derive the equation for equivalent diameter in parallel pipelines	05	CO2
4	Evaluate line pack system for unsteady state pipeline	05	CO3
	SECTION B (40)		I
5	Explain transient analysis in detail	10	CO2
6	Formulate equations of Kirchhoff's laws in matrix notations	10	CO3
7	Find best center position for following network	10	CO3
8	A gas pipeline, DN 500 with 12 mm wall thickness, transports natural gas (specific gravity = 0.6) at a flow rate of 7.5 Mm3/day at an inlet temperature of 15° C. Assuming isothermal flow, determine the velocity of gas at the inlet and outlet of the pipe if the inlet pressure is 7 MPa and the outlet pressure is 6 MPa. The base pressure and base	10	CO1

	erosional velocity. SECTION C (40 Marks)		
)	Explain PNG infrastructure in detail	20	CO5
10	A series piping system, consists of 12 mi of NPS 16, 0.375 in.wall thickness connected to 24 mi of NPS 14, 0.250 in. wall thickness and 8 miles of NPS 12, 0.250 in. wall thickness pipes. Determine the inlet pressure required at the origin A of this pipeline system for a gas flow rate of 100 MMSCFD. Gas is delivered to the terminus B at a delivery pressure of 500 psig. The gas gravity and viscosity are 0.6 and 0.000008 lb/ft-s, respectively. The gas temperature is assumed constant at 60°F. Use a compressibility factor of 0.90 and the General Flow equation with Darcy friction factor = 0.02. The base temperature and base pressure are 60°F and 14.7 psia, respectively. Compare results using the equivalent length method and with the more detailed method of calculating pressure for each pipe segment separately. Comment on your result. $Q = 1.1494 \times 10^{-3} \left(\frac{T_b}{P_b}\right) \left[\frac{\left(P_1^2 - P_2^2\right)}{GT_f LZ_f}\right]^{0.5} (SI units)$	20	CO2
	Or L2 Q3 Q3 Q3 Q3 Q3 Q3 Q3 Q3 Q3 Q3		