Name:	ent No:	. C		
Enrolm				
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES	2		
	End Semester Examination, December 2019	5		
Program		mester : II	r	
Programme Name: MTECH PE Semeste Course Name : Artificial lift technology Time			: 03 hrs	
		ax. Marks: 100		
	page(s) : 2	ax. marks. 100	,	
Instruc	etions : All questions are compulsory. There is no overall choice. Howev	,	oice has	
been pl	rovided. You have to attempt only one of the alternatives in all such question SECTION A	5.		
S. No.		Marks	СО	
1	Differentiate between artificial lift and natural lift.	4	C01	
2	Enumerate the causes of sand production.	4	C01	
3	Classify different types of squeeze cementing method.	4	CO1	
4	Describe how the results are obtained from pressure transient testing.	4	CO4	
5	Illustrate the process to determine AOF from the IPR.	4	CO2	
	SECTION-B			
6	Describe the procedure to be followed for hydraulic fracturing design.	10	CO4	
7	Using a diagram represent the following			
	a. Screen with gravel pack method.	10	CO2	
	b. The mud invasion profile	10		
	c. IPR for saturated reservoir			
9	With the help of diagram describe the unloading sequence.			
	Illustrate the different types of gas lift installations.			
	OR	10	CO3	
	Describe the basic equipments for gas lift technology.		000	
	Draw simplified flow diagram of a closed rotary gas lift system for single intermit well.	tent		
9	Assuming single-phase oil flow in the reservoir, state the equation for flow rat	e in		
-	case of			
	a) Transient flow	10	CO2	
	b) Steady state flow			
	c) Pseudosteady state flow			

	SECTION C		
10	A 60-ft thick, 50-md sandstone pay zone at a depth of 9,500ft is to be acidized w an acid solution having a specific gravity of 1.07 and a viscosity of 1.5cp dow 2inch inside diameter (ID) coil tubing. The formation fracture gradient is 0.7 ps The wellbore radius is 0.328 ft. Assuming a reservoir pressure of 4,000psia, drain area radius of 1,000ft, and a skin factor of 15, calculate (a) The maximum acid injection rate using safety margin 300 psi. (b) The maximum expected surface injection pressure at the maximum injection r OR Discuss the procedure for selection of ESP.	vn a i/ft. age	CO4
11	An oil well has a pay zone around the mid-perf depth of 5,200ft. The formation has a gravity of 26 °API and GLR of 300scf/stb. Water cut remains 0%. The IPF the well is expressed as $q/q_{max} = 1-0.2(P_{wf}/P_r)-0.8(P_{wf}/P_r)^2$ $q_{max} = 1500$ STB/day $P_r = 2000$ Psia A 2.5inch tubing (2.259 inch ID) can be set with a packer at 200ft above the m perf. Calculate the maximum expected oil production rate from the well w continuous gas lift at a wellhead pressure of 200psia if an unlimited amount of gas is available for the well. $q(stb/day)$ $GLR_{optimum}$ (scf/stb) $P_{tubing}(Psia)$ 400 400 4500 603 603 600 3200 676 800	R of nid- vith	
	<pre></pre>	20	CO3