Name: Enrolment No:	UNIVERSITY WITH A PURPOSE
	ROLEUM AND ENERGY STUDIES

Course : Differential Equations

Program : B.Sc. (Honours) (Physics/Chemistry)

Course Code: MATH 1034

Semester : III Time : 03 hrs. Max. Marks: 100

Instructions:

Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (Each carrying 10 marks) and attempt all questions from Section C (each carrying 20 marks). Question 9 and 11 have internal choice.

SECTION A				
S. No.		Marks	СО	
Q 1	Use the Wronskian to prove that the functions $f(x) = e^x$, $g(x) = e^{2x}$ and $h(x) = e^{3x}$ are linearly independent on the real line.	4	CO1	
Q 2	Solve the differential equation $\sin px \cos y = \cos px \sin y + p$ where $p = \frac{dy}{dx}$.	4	CO2	
Q 3	Construct a linear homogeneous ordinary differential equation with constant coefficients whose general solution is given by $x(t) = (c_1 + c_2 t + c_3 t^2) \cos 2t + (c_4 + c_5 t + c_6 t^2) \sin 2t$, where c_1, c_2, c_3, c_4, c_5 and c_6 are arbitrary constants.	4	CO3	
Q 4	Find the solution of the following simultaneous differential equations: Dx - y = 0, -x + Dy = 1, where $D \equiv \frac{d}{dt}$.	4	CO4	
Q 5	Show that the equation $u_{xx} + xu_{yy} + u_y = 0$ is elliptic for $x > 0$ and hyperbolic for $x < 0$.	4	CO5	
SECTION B				
Q 6	Form a partial differential equation by eliminating the arbitrary functions <i>f</i> and <i>g</i> from $z = f(x^2 - y) + g(x^2 + y)$.	10	CO1	
Q 7	Consider the initial value problem $y' = \frac{-3x^2y^4}{4x^3y^3}, y(1) = 1.$ Find the solution of the initial value problem in implicit form.	10	CO2	

Q 8	Find the general solution of the differential equation $y'' + 16y = 32 \sec 2x$, using the method of variation of parameters.	10	CO3
Q 9	Solve the differential equation $\frac{dx}{x^2 + 2y^2} = \frac{dy}{-xy} = \frac{dz}{xz}.$		
	OR		
	Find $f(y)$ such that the total differential equation	10	CO4
	$\{(yz+z)/x\}dx - zdy + f(y)dz = 0,$		
	is integrable. Hence, solve it.		
	SECTION-C		
Q 10	(i) Solve the Cauchy-Euler homogeneous differential equation $x^{3} \frac{d^{3}y}{dx^{3}} + 5x^{2} \frac{d^{2}y}{dx^{2}} + 5x \frac{dy}{dx} + y = x^{2} + \ln x, x > 0.$ (ii) Find the general solution of the differential equation $(D^{2} + 2)y = e^{x} \cos x + x^{2} e^{2x},$ where $D \equiv \frac{d}{dx}$.	10+10	CO3
Q 11	 (i) Solve the partial differential equation ^{∂²z}/_{∂x²} - ^{∂²z}/_{∂x∂y} - 2 ^{∂²z}/_{∂y²} = (2x² + xy - y²) sin xy - cos xy. (ii) Find the general solution of the partial differential equation (3 - 2yz)p + x(2z - 1)q = 2x(y - 3). Hence, obtain the particular solution that passes through the curve z = 0, x² + y² = 4. 		
	OR	10+10	CO5
	 (i) Solve the partial differential equation q + xp - p² = 0 where p = ∂z/∂x and q = ∂z/∂y, by Charpit's method. (ii) Find the complete solution of the partial differential equation (D² - D'² - 3D + 3D')z = xy + e^{x+2y}, where D ≡ ∂/∂x and D' ≡ ∂/∂y. 		