Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December- 2019 Course: Theory of Real Functions Semester: III Program: B.Sc. (Hons.) Mathematics Time 03 hrs. Course Code: MATH- 2010 Max. Marks: 100			
SECTION A (Attempt all questions)			
S. No.		Marks	CO
Q 1	Examine the existence of $\lim _{x \rightarrow 1}(x-\lfloor x\rfloor)$, where $\lfloor x\rfloor$ is greatest integer function.	4	CO1
Q 2	In each of the following give an example of functions f, g and a cluster point x_{0} of $D(f) \cap D(g)$ satisfying the following properties: (a) $\lim _{x \rightarrow x_{0}}[f(x)+g(x)]$ exists, but $\lim _{x \rightarrow x_{0}} f(x)$ and $\lim _{x \rightarrow x_{0}} g(x)$ do not. (b) $\lim _{x \rightarrow x_{0}}[f(x) g(x)]$ exists, but $\lim _{x \rightarrow x_{0}} f(x)$ and $\lim _{x \rightarrow x_{0}} g(x)$ do not.	4	CO1
Q 3	Investigate the Lipschitz continuity for the following functions on $[0, \infty)$ 1. A polynomial of degree at least 2 2. e^{x} 3. $x \sin x$ 4. $f(x)=\left\{\begin{array}{cc}x^{2}, & \text { if } 0 \leq x \leq 1 \\ x^{1 / 2}, & \text { if } 1 \leq x<\infty\end{array}\right.$	4	CO2
Q 4	Discuss the uniform continuity of $\sin x^{2}$ over \mathbb{R}.	4	CO2
Q 5	Find the values of $a_{0}, a_{1}, a_{2}, a_{3}$ for which $a_{0}+a_{1}\|x\|+a_{2}\|x\|^{2}+a_{3}\|x\|^{3}$ is differentiable at $x=0$	4	CO3
Q 6	If $(x)=x^{3}-3 x+\lambda, \lambda$ is real constant and $x \in(0,1)$ then how many values of λ are there for which $f(x)$ has distinct roots?	10	CO3
Q 7	If $f(x)=\left\{\begin{array}{lc}x^{2}, & x \in \mathbb{Q} \\ 0, & \text { otherwise }\end{array}\right.$, then prove or disprove the following statement " $\lim _{x \rightarrow 0} f(x)$ does not exist but $f(x)$ is continuous and differentiable at 0 "	10	CO2
Q 8	Suppose $f:[0,1] \rightarrow \mathbb{R}$ is a function satisfying $\|f(x)-f(y)\| \leq(x-y)^{2} \forall x, y \in$ $[0,1]$, then prove or disprove the following statement " f is necessarily continuous but need not be differentiable"	10	CO2

Q 9	Let $f:[0,1] \rightarrow \mathbb{R}$ defined by (Thomae's Function) $\begin{aligned} & f(x) \\ & =\left\{\begin{array}{c} \frac{1}{q}, x \in \mathbb{Q} \text { and } x=\frac{p}{q} \text { in the reducible form (i.e. } p \in \mathbb{Z} \text { and } q \in \mathbb{N} \text { are coprime } \\ 0, \end{array} x \in \mathbb{Q}^{C}\right. \end{aligned}$ Show that $\lim _{x \rightarrow a} f(x)=0$, for any $a \in(0,1)$.	10	CO1
SECTION-C(Q10 is compulsory and Q11 has internal choice)			
Q 10	a. Consider the function $\|\cos x\|+\|\sin (2-x)\|$. At which of the points f is not differentiable? b. Test for the continuity of $f(x)=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \cos ((m!) \pi x)^{2 n}$	$10+10$	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{CO} \end{aligned}$
Q 11	a. Show that $f(x)=x^{2}$ is not uniformly continuous on \mathbb{R}. b. Consider the limit statement: $\lim _{x \rightarrow 2}(5 x-4)=6$. Find a value of $\delta>0$ that will guarantee that whenever x is within distance δ from 2 (but not equal to 2) $5 x-4$ will approximate the limit accurately to 3 decimal places. OR	10+10	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} \end{aligned}$
Q 11	a. Let $I=\{1\} \cup\{2\} \subset \mathbb{R}$. For $x \in \mathbb{R}$, let $\Phi(x)=\operatorname{dist}(x, I)=\inf \{\|x-y\|: y \in I\}$. Then find the points where $\Phi(x)$ is continuous but not differentiable. b. Using sequential criterion for limits of functions, prove the following limit statements $\lim _{x \rightarrow-4}(2 x+13)=5$	10+10	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} \end{aligned}$

