Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December- 2019

.

Course: Theory of Real Functions Program: B.Sc. (Hons.) Mathematics Course Code: MATH- 2010

Semester: III Time 03 hrs. Max. Marks: 100

SECTION A				
(Attempt all questions)				
S. No.		Marks	CO	
Q 1	Examine the existence of $\lim_{x \to 1} (x - \lfloor x \rfloor)$, where $\lfloor x \rfloor$ is greatest integer function.	4	CO1	
Q 2	In each of the following give an example of functions f , g and a cluster point x_0 of	4	CO1	
	$D(f) \cap D(g)$ satisfying the following properties:			
	(a) $\lim_{x \to x_0} [f(x) + g(x)]$ exists, but $\lim_{x \to x_0} f(x)$ and $\lim_{x \to x_0} g(x)$ do not.			
	(b) $\lim_{x \to x_0} [f(x)g(x)]$ exists, but $\lim_{x \to x_0} f(x)$ and $\lim_{x \to x_0} g(x)$ do not.			
Q 3	Investigate the Lipschitz continuity for the following functions on $[0, \infty)$ 1. A polynomial of degree at least 2 2. e^x	4	CO2	
	3. xsinx			
	4. $f(x) = \begin{cases} x^2, & \text{if } 0 \le x \le 1\\ x^{1/2}, & \text{if } 1 \le x < \infty \end{cases}$			
Q 4	Discuss the uniform continuity of $\sin x^2$ over \mathbb{R} .	4	CO2	
Q 5	Find the values of $a_{0,}a_{1}, a_{2}, a_{3}$ for which $a_{0} + a_{1} x + a_{2} x ^{2} + a_{3} x ^{3}$ is differentiable at $x = 0$	4	CO3	
Q 6	If $(x) = x^3 - 3x + \lambda$, λ is real constant and $x \in (0,1)$ then how many values of λ are there for which $f(x)$ has distinct roots?	10	CO3	
Q 7	If $f(x) = \begin{cases} x^2, & x \in \mathbb{Q} \\ 0, & otherwise \end{cases}$, then prove or disprove the following statement	10	CO2	
	" $\lim_{x\to 0} f(x)$ does not exist but $f(x)$ is continuous and differentiable at 0"			
Q 8	Suppose $f: [0,1] \to \mathbb{R}$ is a function satisfying $ f(x) - f(y) \le (x - y)^2 \forall x, y \in [0,1]$, then prove or disprove the following statement	10	CO2	
	"f is necessarily continuous but need not be differentiable"			

Q 9	Let $f: [0,1] \to \mathbb{R}$ defined by (Thomae's Function) $f(x) = \begin{cases} \frac{1}{q}, x \in \mathbb{Q} \text{ and } x = \frac{p}{q} \text{ in the reducible form } (i.e. \ p \in \mathbb{Z} \text{ and } q \in \mathbb{N} \text{ are coprime}) \\ 0, \qquad x \in \mathbb{Q}^C \end{cases}$ Show that $\lim_{x \to \infty} f(x) = 0$, for any $q \in (0, 1)$	10	CO1	
	Show that $\lim_{x \to a} f(x) = 0$, for any $a \in (0,1)$. SECTION-C			
(Q10 is compulsory and Q11 has internal choice)				
Q 10	a. Consider the function $ cosx + sin(2 - x) $. At which of the points f is not differentiable? b. Test for the continuity of $f(x) = \lim_{n \to \infty} \lim_{m \to \infty} cos((m!)\pi x)^{2n}$	10 +10	CO3	
			CO1	
Q 11	a. Show that $f(x) = x^2$ is not uniformly continuous on \mathbb{R} .		CO2	
	b. Consider the limit statement: $\lim_{x \to 2} (5x - 4) = 6$.	10 - 10		
	Find a value of $\delta > 0$ that will guarantee that whenever x is within distance δ from 2 (but not equal to 2) $5x - 4$ will approximate the limit accurately to 3 decimal places.	10+10		
	OR		CO1	
Q 11	a. Let $I = \{1\} \cup \{2\} \subset \mathbb{R}$. For $x \in \mathbb{R}$, let $\Phi(x) = dist(x, I) = \inf\{ x - y : y \in I\}$. Then find the points where $\Phi(x)$ is continuous but not differentiable.		CO2	
	b. Using sequential criterion for limits of functions, prove the following limit statements	10+10		
	$\lim_{x \to -4} (2x + 13) = 5 \; .$		CO1	