UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2019

Programme: B.Sc. (Hons.) Mathematics
Course Name: Multivariate Calculus
Course Code: MATH 2029
No. of page/s: 02

Semester: III
Max. Marks: 100
Duration: 3 Hrs.

Instructions:

Attempt all questions from Section \mathbf{A} (each carrying 4 marks); all questions from Section \mathbf{B} (each carrying 10 marks) and all questions from Section C (carrying 20 marks).

Section A(Attempt all questions)			
1.	Find the first order partial derivatives of the function $F(x, y)=\int_{y}^{x} \cos \left(e^{t}\right) d t$.	[4]	CO1
2.	Calculate the iterated integral $\int_{0}^{1} \int_{1}^{2} \frac{x e^{x}}{y} d y d x$.	[4]	CO 2
3.	Determine whether or not the vector field $\mathbf{F}(x, y)=(x-y) \mathbf{i}+(x-2) \mathbf{j}$ is conservative.	[4]	CO 3
4.	Evaluate $\int_{C} y \sin z d s$, where C is the circular helix given by the equations $x=\cos t, y=$ $\sin t, z=t, 0 \leq t \leq 2 \pi$.	[4]	CO 3
5.	If $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is a vector field on \mathbb{R}^{3} and P, Q, and R have continuous second-order partial derivatives, show that div $\operatorname{curl} \mathbf{F}=0$.	[4]	CO 3
SECTION B(Q6, Q7, and Q8 are compulsory. Q9 has internal choice)			
6.	Show that the function $f(x, y)=\sqrt{\|x y\|}$ is not differentiable at the point $(0,0)$, but the first order partial derivatives exist at the origin and have the value 0 .	[10]	CO1
7.	Evaluate $\iint_{D} x y d A$, where D is the region bounded by the line $y=x-1$ and the parabola $y^{2}=2 x+6$.	[10]	CO 2
8.	Evaluate $\int_{C} x^{4} d x+x y d y$, where C is the triangular curve consisting of the line segments from $(0,0)$ to $(1,0)$, from $(1,0)$ to $(0,1)$, and from $(0,1)$ to $(0,0)$.	[10]	CO 3
9.	Wheat production W in a given year depends on the average temperature T and the annual rainfall R. Scientists estimate that the average temperature is rising at a rate of $0.15^{\circ} \mathrm{C} /$ year and rainfall decreasing at a rate of $0.1 \mathrm{~cm} /$ year. They also estimate that, at current production levels, $\frac{\partial W}{\partial T}=-2$ and $\frac{\partial W}{\partial R}=8$. a. What is the significance of the signs of these partial derivatives? b. Estimate the current rate of change of wheat production, $\frac{d W}{d t}$. OR	[10]	CO1

	Consider the problem of maximizing the function $f(x, y)=2 x+3 y$, subject to the constraint $\sqrt{x}+\sqrt{y}=5$. a) Try using Lagrange multipliers to solve the problem. b) Does $f(25,0)$ give a larger value than the one in part a)? c) Solve the problem by graphing the constraint equation and several level curves of f. d) Explain why the method of Lagrange multipliers fails to solve the problem. e) What is the significance of $f(9,4)$?		
SECTION C(Q10 is compulsory. Q11A and Q11B have internal choices)			
10.A	Use the Divergence Theorem to calculate the flux of \mathbf{F} across $S . \mathbf{F}(x, y, z)=z \mathbf{i}+y \mathbf{j}+$ $z x \mathbf{k}, S$ is the surface of the tetrahedron enclosed by the coordinate planes and the plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$, where a, b, and c are positive numbers.	[10]	CO3
10.B	Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} . d \mathbf{r}$. In this case C is the oriented counterclockwise as viewed from above. $\mathbf{F}(x, y, z)=\mathbf{i}+(x+y z) \mathbf{j}+(x y-\sqrt{z}) \mathbf{k}, C$ is the boundary of the part of the plane $3 x+2 y+z=1$ in the first octant.	[10]	$\mathrm{CO3}$
11.A	Use polar coordinates to find the volume of the solid enclosed by the hyperboloid $-x^{2}-y^{2}+z^{2}=1$ and the plane $z=2$. OR Use the change of variables $x=u^{2}-v^{2}, y=2 u v$ to evaluate the integral $\iint_{R} y d A$ where R is the region bounded by the x-axis and the parabolas $\quad y^{2}=4-4 x$ and $y^{2}=4+4 x, y \geq 0$.	[10]	CO2
11.B	If the improper triple integral is defined as the limit of a triple integral over a solid sphere as the radius of the sphere increases indefinitely, then show that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{x^{2}+y^{2}+z^{2}} e^{-\left(x^{2}+y^{2}+z^{2}\right)} d x d y d z=2 \pi$ OR Use cylindrical coordinates to show that the volume of the solid bounded above the sphere $r^{2}+z^{2}=a^{2}$ and below the cone $z=r \cot \phi_{0}$ (or $\phi=\phi_{0}$), where $0<\phi_{0}<\frac{\pi}{2}$, is $\quad V=\frac{2}{3} \pi a^{3}\left(1-\cos \phi_{0}\right)$.	[10]	CO2

