

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2019 Programme: B.Sc. (Hons.) Mathematics Course Name: Multivariate Calculus Course Code: MATH 2029 No. of page/s: 02

Semester: III Max. Marks: 100 Duration: 3 Hrs.

Instructions:

Attempt all questions from **Section A** (each carrying 4 marks); all questions from **Section B** (each carrying 10 marks) and all questions from **Section C** (carrying 20 marks).

Section A					
1.	(Attempt all questions) Find the first order partial derivatives of the function $F(x, y) = \int_{y}^{x} \cos(e^{t}) dt$.	[4]	C01		
2.	Calculate the iterated integral $\int_0^1 \int_1^2 \frac{xe^x}{y} dy dx$.	[4]	CO2		
3.	Determine whether or not the vector field $\mathbf{F}(x, y) = (x - y)\mathbf{i} + (x - 2)\mathbf{j}$ is conservative.	[4]	CO3		
4.	Evaluate $\int_C y \sin z ds$, where C is the circular helix given by the equations $x = \cos t$, $y = \sin t$, $z = t$, $0 \le t \le 2\pi$.	[4]	CO3		
5.	If $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$ is a vector field on \mathbb{R}^3 and P, Q , and R have continuous second-order partial derivatives, show that div curl $\mathbf{F} = 0$.	[4]	CO3		
SECTION B (Q6, Q7, and Q8 are compulsory. Q9 has internal choice)					
6.	Show that the function $f(x, y) = \sqrt{ xy }$ is not differentiable at the point (0, 0), but the first order partial derivatives exist at the origin and have the value 0.	[10]	CO1		
7.	Evaluate $\iint_D xydA$, where <i>D</i> is the region bounded by the line $y = x - 1$ and the parabola $y^2 = 2x + 6$.	[10]	CO2		
8.	Evaluate $\int_C x^4 dx + xy dy$, where <i>C</i> is the triangular curve consisting of the line segments from (0, 0) to (1, 0), from (1, 0) to (0, 1), and from (0, 1) to (0, 0).	[10]	CO3		
9.	Wheat production <i>W</i> in a given year depends on the average temperature <i>T</i> and the annual rainfall <i>R</i> . Scientists estimate that the average temperature is rising at a rate of 0.15°C/year and rainfall decreasing at a rate of 0.1 cm/year. They also estimate that, at current production levels, $\frac{\partial W}{\partial T} = -2$ and $\frac{\partial W}{\partial R} = 8$. a. What is the significance of the signs of these partial derivatives? b. Estimate the current rate of change of wheat production, $\frac{dW}{dt}$. OR	[10]	C01		

	Consider the problem of maximizing the function $f(x, y) = 2x + 3y$, subject to				
	the constraint $\sqrt{x} + \sqrt{y} = 5$.				
	a) Try using Lagrange multipliers to solve the problem.				
	b) Does $f(25, 0)$ give a larger value than the one in part a)?				
	c) Solve the problem by graphing the constraint equation and several level				
	curves of f .				
	d) Explain why the method of Lagrange multipliers fails to solve the problem.				
	e) What is the significance of $f(9, 4)$?				
	SECTION C				
	(Q10 is compulsory. Q11A and Q11B have internal choices)				
	Use the Divergence Theorem to calculate the flux of F across S. $\mathbf{F}(x, y, z) = z \mathbf{i} + y \mathbf{j} + \mathbf{j}$				
10.A	zx k, S is the surface of the tetrahedron enclosed by the coordinate planes and the plane	[10]	CO3		
	$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, where <i>a</i> , <i>b</i> , and <i>c</i> are positive numbers.				
	Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot d\mathbf{r}$. In this case C is the oriented counterclockwise				
10.B	as viewed from above. $\mathbf{F}(x, y, z) = \mathbf{i} + (x + yz)\mathbf{j} + (xy - \sqrt{z})\mathbf{k}$, C is the boundary of	[10]	CO3		
	the part of the plane $3x + 2y + z = 1$ in the first octant.				
	Use polar coordinates to find the volume of the solid enclosed by the hyperboloid				
	$-x^2 - y^2 + z^2 = 1$ and the plane $z = 2$.				
	OR				
11.A		[10]	CO2		
	Use the change of variables $x = u^2 - v^2$, $y = 2uv$ to evaluate the integral $\iint_R y dA$				
	where <i>R</i> is the region bounded by the <i>x</i> - axis and the parabolas $y^2 = 4 - 4x$				
	and $y^2 = 4 + 4x, y \ge 0$.				
	If the improper triple integral is defined as the limit of a triple integral over a solid				
	sphere as the radius of the sphere increases indefinitely, then show that				
	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{x^2 + y^2 + z^2} \ e^{-(x^2 + y^2 + z^2)} dx \ dy \ dz = 2\pi \ .$				
11.B	OR	[10]	CO2		
	Use cylindrical coordinates to show that the volume of the solid bounded above the				
	sphere $r^2 + z^2 = a^2$ and below the cone $z = r \cot \phi_0$ (or $\phi = \phi_0$), where				
	$0 < \phi_0 < \frac{\pi}{2}$, is $V = \frac{2}{3}\pi a^3 (1 - \cos \phi_0)$.				