

\begin{tabular}{|c|c|c|c|}
\hline Q10 \& \begin{tabular}{l}
A beam of particles with energy \(E\) is incident on a potential barrier with potential function
\[
\left\{\begin{array}{cc}
V(x)=0 \& \text { for } x<0 \\
V(x)=V_{o} \& \text { for } 0<x<a \\
V(x)=0 \& \text { for } x>a
\end{array}\right\}
\] \\
Where the symbols have their usual meaning. Show that there is a finite probability of transmission even if \(E<V_{o}\). \\
OR \\
A beam of electrons impinges on an energy step barrier of height 0.035 eV . Calculate the fraction of electrons reflected and transmitted at the barrier when the energy of the electron is (i) 0.045 eV (ii) 0.020 eV
\end{tabular} \& [20]
[20] \& \(\mathrm{CO3}\)

$\mathrm{CO3}$ \\
\hline \multicolumn{4}{|l|}{Values of some physical constants:} \\
\hline Plan
Bolt
Mas
Mas
Velo
Rydb
Avo \& constant, $\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J} . \mathrm{s}$
nn's constant, $\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
electron, $\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{Kg}$
proton, $\mathrm{m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{Kg}$
of light, $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Constant, $\mathrm{R}=1.097 \times 10^{7} \mathrm{~m}^{-1}$
's number $=6.023 \times 10^{23}$ \& \& \\
\hline
\end{tabular}

