Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Programme Name: B.Sc. (H) Chemistry & B.Sc. (H) MathsCourse Name: Elements of Modern PhysicsCourse Code: PHYS 2009Nos. of page(s): 02

Semester : III Time : 03 hrs Max. Marks : 100

Instructions: Your answer should be concise and to the point.

	SECTION A (All questions are compulsory)		
Q1	Define zero point energy for a particle in a rigid box and discuss its dependence on mass of the particle and size of the box.	[5]	CO3
Q2	Calculate the uncertainty in the velocity of an electron which is confined in a 10Å box.	[5]	CO2
Q3	An electron collides with a Hydrogen atom and excites it to a state of $n = 3$. How much energy was given to the Hydrogen atom in this inelastic collision?	[5]	CO1
Q4	Calculate the energy of the neutron whose de Broglie wavelength is 1Å. (mass of neutron = $1.674 \times 10^{-27} \text{ Kg}$)	[5]	CO1
	SECTION B (Question 8 has internal choice.)		
Q5	Describe the Davisson & Germer experiment to demonstrate the wave nature of particles.	[10]	CO1
Q6	Write a note on the arguments that lead to the failure of the proton-electron model.	[10]	CO4
Q7	Sketch the N-Z graph and discuss the conclusions that can be drawn from it.	[10]	CO4
Q8	Normalize the wave-function $\varphi(x) = e^{- x } sin\alpha x$ OR Find the expectation value $\langle x \rangle$ of the position of a particle trapped in a one-dimensional box of width <i>L</i> .	[10]	CO2
	SECTION-C (Question 10 has internal choices.)		
Q9	 (a) A piece of an ancient wooden boat shows an activity of ¹⁴C of 3.9 disintegrations per minute per gm of Carbon. Estimate the age of the boat if the half-life of ¹⁴C is 5568 years. Assume that the activity of fresh ¹⁴C is 15.6 dpm. gm. 	[10]	CO4
	(b) List out the difficulties with β -decay that led to the assumption of neutrino. Also discuss the Pauli's neutrino hypothesis.	[10]	CO4

Q10 A beam of particles with energy <i>E</i> is incident on a potential barrier with potential	[20]	CO3		
function				
$ (V(x) = 0 for \ x < 0) $				
$\begin{cases} V(x) = 0 & for \ x < 0 \\ V(x) = V_o & for \ 0 < x < a \\ V(x) = 0 & for \ x > a \end{cases}$				
$ \left(\begin{array}{c} V(x) = 0 \\ \end{array} \right) for \ x > a $				
Where the symbols have their usual meaning. Show that there is a finite probability of				
transmission even if $E < V_o$.				
OR		CO3		
A beam of electrons impinges on an energy step barrier of height 0.035eV. Calculate	[20]			
the fraction of electrons reflected and transmitted at the barrier when the energy of the				
electron is (i) 0.045eV (ii) 0.020eV				
Values of some physical constants:				
Planck's constant, $h = 6.6 \times 10^{-34} \text{ J.s}$				
Boltzmann's constant, $k = 1.38 \times 10^{-23} \text{ J/K}$				
Mass of electron, $m_e = 9.1 \times 10^{-31} \text{ Kg}$				
Mass of proton, $m_p = 1.67 \times 10^{-27} \text{ Kg}$				
Velocity of light, $c = 3 \times 10^8$ m/s				
Rydberg Constant, $R = 1.097 \times 10^7 \text{ m}^{-1}$				
Avogadro's number = 6.023×10^{23}				