

| Q 7 | | |
| :--- | :--- | :--- | :--- | :--- |

	A vapor-compression refrigeration system circulates Refrigerant 134a at rate of 6 $\mathrm{kg} / \mathrm{min}$. The refrigerant enters the compressor at $-10^{\circ} \mathrm{C}, 1.4$ bar, and exits at 7 bar . The isentropic compressor efficiency is 67%. There are no appreciable pressure drops as the refrigerant flows through the condenser and evaporator. The refrigerant leaves the condenser at 7 bar, $24^{\circ} \mathrm{C}$. Ignoring heat transfer between the compressor and its surroundings, evaluate (a) The coefficient of performance. (b) The refrigerating capacity, in tons. (c) The irreversibility rates of the compressor and expansion valve, each in kW (d) The changes in specific flow availability of the refrigerant passing through the evaporator and condenser, respectively, each in $\mathrm{kJ} / \mathrm{kg}$. $\text { Let } \mathrm{T}_{\mathrm{o}}=21^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{o}}=1 \mathrm{bar}$		
Q. 11	At a particular instant of time, a square metal bar has an axial temperature distribution given by: $T(x)=50\left(1+8 x^{2}\right)$ where x is the distance (in meters) measured from one end and T is the local temperature (in ${ }^{\circ} \mathrm{C}$). Due to its high thermal conductivity, the temperature in the bar may be assumed uniform at any cross-section. The cross-section of the bar has width $\mathrm{W}=2.5 \mathrm{~cm}$ and the length of the bar is $\mathrm{L}=0.3 \mathrm{~m}$. The density and specific heat of the metal are $\rho=2700 \mathrm{~kg} / \mathrm{m} 3$ and $\mathrm{c}=0.90 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$, respectively. a.) Is the average bar temperature rising or falling at this instant of time? (Assume that the bar can only transfer energy at its end points; i.e., the sides are insulated.) b.) Compute change in internal energy if the bar is cooled to a uniform temperature of $\mathrm{T}_{\mathrm{f}}=20^{\circ} \mathrm{C}$. c.) Compute change in entropy of the bar for the process in part (b). d.) Compute change in exergy of the bar for the process in part (b) given a large heat sink at $20^{\circ} \mathrm{C}$? e.) Compute maximum thermal efficiency at which work could be produced for the conditions in part (d)?	20	CO 2
Q. 10	A cold fluid cannot be stored for long periods because thermal gains inevitably occur, even in a Dewar (a vacuum-insulated container). An alternative is to store a highpressure gas (e.g., air) and then release it as needed to generate the cold source. In a particular application, air at $\mathrm{P}_{1}=100 \mathrm{~atm}$ is stored at $\mathrm{T}_{1}=25^{\circ} \mathrm{C}$ in a $\mathrm{V}=15$ liter tank. a) Identify exergy of the air in the tank? b) Identify maximum possible cooling (in J) that can be provided at $\mathrm{Tc}=0^{\circ} \mathrm{C}$? c) Indicate how this cooling might be accomplished. OR	20	CO
	Air enters the compressor of an ideal air standard Brayton cycle at $100 \mathrm{kPa}, 25^{\circ} \mathrm{C}$, with a volumetric flow rate of $8 \mathrm{~m}^{3} / \mathrm{s}$. The compressor pressure ratio is 12 . The turbine inlet temperature is $1100^{\circ} \mathrm{C}$. (a) Analyze entropy generation of the system and comment on possibility and impossibility of the system (a) Calculate Exergetic efficiency of the cycle	20	

