Name: Enrolment No:			
Course: Applied Fluid Mechanics Semester: III Program: B. Tech (Automotive Design Engineering) Time 03 hrs. Course Code: MECH 2015 Max. Marks: 100 Instructions: Note: Attempt all questions, internal choices are given. Section B and Section C, both having ONE INTERNAL choice.			
SECTION A			
S. No.		Marks	CO
Q1	Explain effect of temperature on the viscosity of liquids and gases.	05	CO1
Q2	Explain Lagrangian and and Eulerian Method of fluid motion.	05	CO2
Q3	Explain velocity measurement in case of fluid flow through a circular pipe; also derive expression, which is used to calculate flow velocity.	05	CO
Q4	Explain concept of equivalent length used to replace pipe systems (series and parallel) used to connect reservoirs.	05	CO4
SECTION B			
Q5	For the velocity components in a fluid flow given by $=2 x y ; v=a^{2}+x^{2}-y^{2}$. Show that the flow is possible. Obtain the relevant stream function.	10	CO2
Q6	Show that the loss of head due to sudden expansion in the pipeline is the function of velocity $\left(h_{l}=\frac{1}{2 g}\left(V_{1}{ }^{2}-V_{2}{ }^{2}\right)\right.$	10	CO4
Q7	Derive an expression for the velocity distribution for viscous flow through a circular pipe. Also, sketch the distribution of velocity and shear stress across a section of the pipe.	10	CO 4
Q8	A wooden block in the form of a rectangular prism floats with its shortest axis vertical. The block is 40 cm long, 20 cm wide and 15 cm deep with a depth of immersion of 12 cm . calculate the position of metacenter and comment on the stability of the block.	10	CO1

	OR		
	Derive hydrostatic law $\left(\frac{\partial p}{\partial z}=-\gamma\right)$	10	CO1
SECTION-C			
Q9	(A)Derive Bernoulli's equation along a streamline and state all the assumptions clearly.	10	CO 3
	(B) A venturimeter of inlet diameter 300 mm and throat diameter 150 mm is fixed in a vertical pipe line. A liquid of sp. gr. 0.8 is flowing upward through the pipe line. A differential manometer containing mercury gives a reading of 100 mm when connected at inlet and throat. The vertical difference between inlet and throat is 500 mm . If $\mathrm{Cd}=0.98$, then find; (i) rate of flow of liquid in liter per second and (ii) difference of pressure between inlet and throat in $\mathrm{N} / \mathrm{m}^{2}$.	10	CO4
Q10	(A) A 250 mm diameter, 3 km long straight pipe runs between two reservoirs of surface elevations 135 m and 60 m . A 1.5 km long, 300 mm diameter pipe is laid parallel to the 250 mm diameter pipe from its mid-point to the lower reservoir. Neglecting all minor losses and assuming a friction factor of 0.02 for both pipes, find the increase in discharge caused by addition of 300 mm diameter pipe.	15	CO4
	(B) Explain boundary layer concept.	05	$\mathrm{CO5}$
	OR		
	(A) A piezometer and a Pitot tube are tapped into a horizontal water pipe, as shown in figure given below, to measure static and stagnation (static+ dynamic) pressures. For the indicated water column heights, determine the velocity at the center of the pipe.	15	CO4

