| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
| Cou <br> Pro <br> Tim <br> Ins <br> (i) <br> (ii) | UNIVERSITY OF PETROLEUM AND ENERGY STUDIES <br> End Semester Examination, December 2019 <br> se: Chemical Eng I (Thermodynamics \& Measuring A. Inst.) - HSFS2001 ramme: BTech (FSE) <br> : 03 hrs. <br> uctions: <br> All Questions in Section A are compulsory. Section B has 5 Questions with 2 que internal choice. Section $\mathbf{C}$ has 2 questions with one question having internal choi Answer all the questions sequentially. | ter: I <br> Marks <br> ions h | 100 <br> ing |
| SECTION A (Maximum marks 20) |  |  |  |
| S. <br> No. |  | $\begin{gathered} \hline \text { Mark } \\ \mathrm{S} \\ \hline \end{gathered}$ | COs |
| Q 1 | A 3-m ${ }^{3}$ rigid tank contains nitrogen gas at 500 kPa and 300 K . Now heat is transferred to the nitrogen in the tank and the pressure of nitrogen rises to 800 kPa . The work done during this process is <br> (a) 500 kJ <br> (b) 900 kJ <br> (c) 1500 kJ <br> (d) 2400 kJ <br> (e) 0 kJ | 2 | CO1 |
| Q2 | Degree of freedom for thermodynamic system is calculated with the help of following formula, where $F$ is degree of freedom, $\pi$ is number of phases and $n$ is the number of components <br> (a) $F=\pi+2-N$ <br> (b) $N=\pi-2+F$ <br> (c) $F=2-\pi+N$ <br> (d) $\pi=F+2-N$ | 2 | CO1 |
| Q3 | Give full forms of the following: <br> (a) RTD <br> (b) CVGT | 2 | CO1 |
| Q4 | IR spectrophotometer uses electromagnetic radiations in the range of <br> a) $185-400 \mathrm{~nm}$ <br> b) $400-700 \mathrm{~nm}$ <br> c) $700-15000 \mathrm{~nm}$ <br> d) $900-12000 \mathrm{~nm}$ | 2 | CO 4 |
| Q5 | Two main synthetic approaches for the manufacture of polymers are $\qquad$ and - $\qquad$ | 2 | $\mathrm{CO5}$ |
| Q6 | One kmol of methane $\left(\mathrm{CH}_{4}\right)$ is burned with an unknown amount of air during a combustion process. If the combustion is complete and there are 1 kmol of free $\mathrm{O}_{2}$ in the products, the air-fuel mass ratio is <br> (a) 34.6 <br> (b) 25.7 <br> (c) 17.2 <br> (d ) 14.3 <br> (e) 11.9 | 2 | $\mathrm{CO2}$ |
| Q7 | Consider a fish swimming 5 m below the free surface of water. The increase in the pressure exerted on the fish when it dives to a depth of 45 m below the free surface is: | $\begin{gathered} 3 \times 2= \\ 6 \end{gathered}$ | $\begin{gathered} \mathrm{CO1} \\ \hline \end{gathered}$ |



|  | (b) List the advantage of instrumental methods of chemical analysis over the classical methods. <br> (c) What is Beer-Lambert law and what are its limitations? |  |  |
| :---: | :---: | :---: | :---: |
| Q17 | i) What are polymers? Explain the molecular structure of polymers with the <br> help of diagrams and comment on relative strength of various polymer <br> structures. <br> ii) How is molecular weight of a polymer calculated? <br> iii) Calculate the molecular weight for a polymer with number and mass of <br> monomer given as below: | 20 | $\mathrm{CO5}$ |
|  | Number of monomer units Mass of monomer units(Kg) <br> 1  |  |  |
|  |  |  |  |
|  | 3 l |  |  |
|  | 4 ( 80 |  |  |
|  | 2 20 |  |  |
|  | 1 80 |  |  |
|  | OR |  |  |
|  | Knowing kinetics of a chemical reaction is crucial for design of a chemical reactor. <br> i) What are the various methods used for the determination of rate equations? <br> ii) Give the classification of various types of chemical reactor and their describe the principle on which they function |  |  |

