Name Enro	e: Iment No:				
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES				
Com	End Semester Examination, December 2019	atom II	r		
Course: Chemical Eng I (Thermodynamics & Measuring A. Inst.) – HSFS2001 Semest Programme: BTech (FSE)					
0		N. 7. 1	100		
Time	e: 03 hrs. Max.	Marks:	100		
Inct	ructions:				
(i)	All Questions in Section A are compulsory. Section B has 5 Questions with 2 quest	tions has	ina		
(1)	internal choice. Section C has 2 questions with one question having internal choice		ving		
(ii)	Answer all the questions sequentially.				
(11)	SECTION A (Maximum marks 20)				
			-		
S.		Mark	COs		
No.		S			
Q 1	A 3-m ³ rigid tank contains nitrogen gas at 500 kPa and 300 K. Now heat is transferred				
	to the nitrogen in the tank and the pressure of nitrogen rises to 800 kPa. The work done				
	during this process is	2	CO1		
	(a) 500 kJ (b) 900 kJ (c) 1500 kJ				
	(d) 2400 kJ (e) 0 kJ				
Q2	Degree of freedom for thermodynamic system is calculated with the help of following				
	formula, where F is degree of freedom, π is number of phases and n is the number of				
	components	2	CO1		
	(a) $F = \pi + 2 - N$ (b) $N = \pi - 2 + F$				
	(c) $F = 2 - \pi + N$ (d) $\pi = F + 2 - N$				
Q3	Give full forms of the following:				
	(a) RTD	2	CO1		
	(b) CVGT	2	,4		
Q4	IR spectrophotometer uses electromagnetic radiations in the range of				
	a) 185 – 400 nm				
	b) $400 - 700 \text{ nm}$	2	CO4		
	c) $700 - 15000 \text{ nm}$	-	001		
	d) 900 – 12000 nm				
05					
Q5	Two main synthetic approaches for the manufacture of polymers are and	•	0.05		
	·································	2	CO5		
Q6	One kmal of methane (CH) is hurmed with an unknown amount of sir during a				
Q0	One kmol of methane (CH ₄) is burned with an unknown amount of air during a combustion process. If the combustion is complete and there are 1 kmol of free O_2 in				
	the products, the air-fuel mass ratio is				
	(a) 34.6				
	(b) 25.7	2	CO2		
	(c) 17.2				
	(d) 14.3				
	(e) 11.9				
Q7	Consider a fish swimming 5 m below the free surface of water. The increase in the	3×2 =	CO1		
	pressure exerted on the fish when it dives to a depth of 45 m below the free surface is:	6	,4		

0 Q11	(a) 0.64 (b) 0.74 (c) 0.54 SECTION B (Maxin At high temperatures, ethyl chloride produces HCl		2	,2	
	CH ₃ CH ₂ Cl(g) $\xrightarrow{\Delta}$ HCl(g)Using the rate data for the reaction at 650°C presentthe reaction order with respect to the concentrationrate constant for the reaction. <i>Experiment</i> $[CH_3CH_2Cl]_0$ (M)10.01020.01530.03040.040	ted in the following table,		CO2	
Q12			le. 8	CO3	
Q13					
Q14	 Explain inversion line, inversion temperature and maximum inversion temperature in context with Joule-Thompson coefficient. Which part of refrigeration cycle exploits Joule-Thompson effect and how? Or (a) Define the coefficient of performance of a refrigerator in words. Can it be greater than unity? (b) A food department is kept at -12°C by a refrigerator in an environment at 30°C. The total heat gain to the food department is estimated to be 3300 kJ/h and the heat rejection in the condenser is 4800 kJ/h. Determine the power input to the 			CO1 , 3	
	The total heat gain to the food department i heat rejection in the condenser is 4800 kJ/h	-	put to the		
Q15	The total heat gain to the food department i heat rejection in the condenser is 4800 kJ/k compressor, in kW and the COP of the refri	gerator. arious flow measurement d	evices viz 8	CO2 ,5	
Q15	The total heat gain to the food department is heat rejection in the condenser is 4800 kJ/k compressor, in kW and the COP of the refri Discuss the advantage and disadvantage of using va <i>a viz</i> orifice meter, venturi and nozzle. OR Write Bernoulli's equation and derive the expression	gerator. arious flow measurement d on for velocity of fluid flow a meters.	evices viz 8		

Q17	i)	What are polymers? Explain the molecular structure of polymers with the help of diagrams and comment on relative strength of various polym structures.		
	ii) How is molecular weight of a polymer calculated?			
	iii) Calculate the molecular weight for a polymer with number and mass of monomer given as below:			
	Number	of monomer units Mass of monomer units(Kg)		
	1	50		
	3	20 80	20	COS
	+ 2	20		
	1	80		
	OR Knowing kinetics of a chemical reaction is crucial for design of a chemical reactor.			
	Knowing i)	What are the various methods used for the determination of rate equations	,	
	ii)	Give the classification of various types of chemical reactor and their describe the principle on which they function	•	