Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, December 2019**

Course: Applied Numerical Methods Program: **B** Tech FSE **Course Code: MATH 2007**

Semester: III Time 03 hrs.

instruc	tions: All questions are compulsory. Internal choice is visible in the question(s). Calcula	nor is allo	weu.
	SECTION A		
S. No.		Marks	CO
Q 1	Write done the conditions for the equation $A \frac{\partial u^2}{\partial x^2} + B \frac{\partial u^2}{\partial x \partial y} + C \frac{\partial u^2}{\partial y^2} + D \frac{\partial u}{\partial x} + E \frac{\partial u}{\partial x} + Fu = 0$ to be (i) Elliptic (ii) Parabolic (iii) Hyperbolic. Also, write down the condition for its linearity.	4	CO3
Q 2	Write the following polynomial in factorial notation: $x^3 + 7x^2 - 5x + 7$.	4	CO4
Q 3	Find a root of the equation $x = \cos x$, using false position method correct up to one place of decimal.	4	CO1
Q 4	Estimate the production for the year 1964 from the following dataYear:19611962196319641965Production:200220260350	4	CO4
Q 5	Prove that $\Delta \log x = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right].$	4	CO4
	SECTION B		
Q 6	Use the finite difference method to solve numerically the equation $y'' + y + 1 = 0$, with boundary conditions $y = 0$ when $x = 0$ and $y = 0$ when $x = 1$. Choose $n = 2$. Where n is number of sub intervals.	10	CO2
Q 7	The following table gives the marks secured by 100 students in the Statistical Methods.		
	Range of Marks: 30-40 40-50 50-60 60-70 70-80		
1	No of students: 25 25 22 11 07		

Max. Marks: 100

Q 8	A wind force distributed against the side of a sky scrapper is measured as given in the following table:											
	Height, m	0	30	60	90	120	150	180	210	240		
	Force,N/ m	0	350	1000	1500	2600	3000	3300	3500	3600	10	CO4
	Compute the net force using (i) Trapezoidal rule (ii) Simpson's 1/3 rule								ule			
Q 9	Find a real root of the equation $2x - \log_{10} x = 7$ correct up to two places of decimal. by Newton-Raphson method.ORUsing fixed point iteration method find a root of $2x - \log_{10} x = 7$ correct up to two places of decimal.									10	CO1	
	I					SEC	FION-0	2				
Q 10a	Solve the following system of equations by Cholesky's LU decomposition method. 5x + 3y + 7z = 4, $3x + 26y + 2z = 9$, $7x + 2y + 11z = 5$.									10	CO1	
Q 10b	Solve the following set of differential equations using Euler's method, assuming that at $x = 0$, $y_1 = 4$, and $y_2 = 6$. Integrate to $x = 1.0$ with a step size of 0.5. $\frac{dy_1}{dx} = -0.5y_1 \text{ and } \frac{dy_2}{dx} = 4 - 0.3y_2 - 0.1y_1$									10	CO2	
Q 11	Solve the equation, $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square mesh with sides $x = 0$, $y = 0$, $x = 3$ & $y = 3$ with $u = 0$ on boundary and mesh length equal to 1.											
	OR											
	Obtain the numerical solution of $u_t = u_{xx}$, $0 \le x \le 1$, $t \ge 0$ under the conditions u (0, t) = u (1, t) = 0, and u (x, 0) = $\begin{cases} 2x \text{ for } 0 \le x \le \frac{1}{2} \\ 2(1-x) \text{ for } \frac{1}{2} \le x \le 1 \\ \text{Use Bender- Smith approach.} \end{cases}$									20	C03	