Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019 Course: Applied Numerical Methods Semester: III Program: B Tech FSE Time 03 hrs. Course Code: MATH 2007 Max. Marks: $\mathbf{1 0 0}$ Instructions: All questions are compulsory. Internal choice is visible in the question(s). Calculator is allowed.			
SECTION A			
S. No.		Marks	CO
Q 1	Write done the conditions for the equation $A \frac{\partial u^{2}}{\partial x^{2}}+B \frac{\partial u^{2}}{\partial x \partial y}+C \frac{\partial u^{2}}{\partial y^{2}}+D \frac{\partial u}{\partial x}+E \frac{\partial u}{\partial x}+F u=0$ to be (i) Elliptic (ii) Parabolic (iii) Hyperbolic. Also, write down the condition for its linearity.	4	$\mathrm{CO3}$
Q 2	Write the following polynomial in factorial notation: $\mathrm{x}^{3}+7 \mathrm{x}^{2}-5 \mathrm{x}+7$.	4	CO4
Q 3	Find a root of the equation $x=\cos x$, using false position method correct up to one place of decimal.	4	CO1
Q 4	Estimate the production for the year 1964 from the following data Year: 1961 1962 1963 1964 1965 Production: 200 220 260 --- 350	4	$\mathrm{CO4}$
Q 5	Prove that $\Delta \log x=\log \left[1+\frac{\Delta f(x)}{f(x)}\right]$.	4	$\mathrm{CO4}$
SECTION B			
Q 6	Use the finite difference method to solve numerically the equation $y^{\prime \prime}+y+1=0$, with boundary conditions $y=0$ when $x=0$ and $y=0$ when $x=1$. Choose $n=2$. Where n is number of sub intervals.	10	CO2
Q 7	The following table gives the marks secured by 100 students in the Statistical Methods. Find the number of students who got more than 55 marks using Newton' Forward Difference Interpolation formula.	10	$\mathrm{CO4}$

Q 8	A wind force distributed against the side of a sky scrapper is measured as given in the following table:									10	$\mathrm{CO4}$
	Height, m 0	30	60	90	120	150	180	210	240		
	$\begin{array}{l}\text { Force, } \mathrm{N} / \\ m\end{array}$ 0	350	1000	1500	2600	3000	3300	3500	3600		
	Compute the net force using (i) Trapezoidal rule (ii) Simpson's $1 / 3$ rule										
Q 9	Find a real root of the equation $2 x-\log _{10} x=7$ correct up to two places of decimal. by Newton-Raphson method. OR Using fixed point iteration method find a root of $2 x-\log _{10} x=7$ correct up to two places of decimal.									10	CO1
SECTION-C											
Q 10a	Solve the following system of equations by Cholesky's LU decomposition method.$5 x+3 y+7 z=4, \quad 3 x+26 y+2 z=9, \quad 7 x+2 y+11 z=5$									10	$\mathrm{CO1}$
Q 10b	Solve the following set of differential equations using Euler's method, assuming that at $x=0, y_{1}=4$, and $y_{2}=6$. Integrate to $x=1.0$ with a step size of 0.5 .$\frac{d y_{1}}{d x}=-0.5 y_{1} \text { and } \frac{d y_{2}}{d x}=4-0.3 y_{2}-0.1 y_{1}$									10	$\mathrm{CO2}$
Q 11	Solve the equation, $\nabla^{2} u=-10\left(x^{2}+y^{2}+10\right)$ over the square mesh with sides $\mathrm{x}=$ $0, y=0, x=3 \& y=3$ with $u=0$ on boundary and mesh length equal to 1 . OR Obtain the numerical solution of $u_{t}=u_{x x}, 0 \leq \mathrm{x} \leq 1, \mathrm{t} \geq 0$ under the conditions $\mathrm{u}(0$, $\mathrm{t})=\mathrm{u}(1, \mathrm{t})=0$, and $\mathrm{u}(\mathrm{x}, 0)=\left\{\begin{array}{c}2 x \text { for } 0 \leq x \leq \frac{1}{2} \\ 2(1-x) \text { for } \frac{1}{2} \leq x \leq 1\end{array}\right.$ Use Bender- Smith approach.									20	$\mathrm{CO3}$

