Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2019

Course: Analog Electronics (ECEG 2027)

Semester: III

Program: B. Tech ELE

Time: 03 hrs. Max. Marks: 100

Instructions: Attempt all questions.

Diagrams must be neat and clean

SECTION A						
S. No.		Marks	CO			
Q 1	Discuss the action of an operational amplifier as an integrator .	5	CO3			
Q 2	Describe the action of a transistor as an amplifier . What will happen to its action, if the doping concentration of collector is same as emitter ?	5	CO2			
Q 3	In the circuit of figure the diode, find the condition when the diode will operate .	5	CO1			
Q 4	What best describe the circuit given below. Draw the output waveform , the input waveform is given below. What will be happen to the output if the polarity of the diode is reversed ? $ \begin{array}{cccccccccccccccccccccccccccccccccc$	5	CO1			

	SECTION B					
Q 5	Describe the working of a JFET transistor , with schematic representation of distribution of V_{DS} of 8 V and V_{GG} of -1 V. What will happen to channel distribution when V_{GG} becomes +1 V.	10	CO2			
Q 6	Analyze the op-amp circuit shown in the figure has an open loop gain to 100. Calculate the closed loop ratio (V_O/V_S) .	10	CO4			
Q 7	Determine the current through each diode if (i) $E_1 = E_2 = 0 \text{ V}$, (ii) (ii) $E_1 = E_2 = 5 \text{ V}$. $E_1 \circ \qquad $	10	CO1			

Q 8	In the circuit given below, calculate the value of Vi for the LED to be on. 10 $k\Omega$ V_i		CO4
	SECTION-C		
Q 9	Design an AC connection of differential amplifier circuit and determine the single		
	ended output voltage of the circuit with the following specification		
	$V_{CC} = 9 \text{ V}, R_C = 69 \text{ k}\Omega, R_E = 61 \text{ k}\Omega, \text{Vin} = 2 \text{ mV}.$		
	OR	20	CO4
	Design a three stage amplifier , using operational amplifier, providing outputs that	20	
	are 10, 20 and 40 times larger than the input. The feedback resistor for all the three		
	circuits are 540 k Ω .		
Q 10	Design a Band Pass Filter circuit using two operational amplifier.		
	Also determine the cut off frequencies of the filter with the following specifications:		
	$R1 = R2 = 10 \text{ k}\Omega$, $C1 = 0.1 \mu\text{F}$, $C2 = 0.002 \mu\text{F}$.	20	CO3
	Draw the BODE plot for the lower cut off frequency.		