Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019			
Course: Signals \& Systems Semester: III Program: B Tech ECE/ Mechatronics Time 03 hrs. Course Code: ECEG2010 Max. Marks: 100 Instructions: \bullet - Attempt all questions as per the instruction. \bullet Assume any data if required and indicate the same clearly. \bullet Unless otherwise indicated symbols and notations have their usual meanings. - Strike off all unused blank pages			
SECTION A (20 Marks)			
S. No.		Marks	CO
Q 1	Statement the stability and causality of continuous time LTI system. Check stability of continuous-time system having the following impulse responses: $h(t)=t e^{-t} u(t)$	5	CO1
Q 2	Given the relationships $y(t)=x(t) * h(t)$ and $z(t)=x(3 t) * h(3 t)$ and given that $x(t)$ has the Fourier transform $X(\omega)$ and $h(t)$ has the Fourier transform $H(\omega)$, use Fourier transform properties to show that $z(t)$ has the form $z(t)=A y(B t)$. And also determine the values of A and B	5	CO 2
Q 3	Find the Laplace transform of $x(t)= \begin{cases}e^{t} \sin (2 t) ; & t \leq 0 \\ 0 ; & t>0\end{cases}$ Indicate the location of its poles and its region of convergence.	5	$\mathrm{CO3}$
Q 4	Let $x[n]=(-1)^{n} u[n]+\alpha^{n} u\left[n-n_{0}\right]$. Determine the constraints on the complex number α and the integer n_{0}, geiven that the ROC of $\mathrm{X}(\mathrm{z})$ is $1<\|z\|<2$	5	$\mathrm{CO4}$
SECTION B (40 Marks)			
Q 5	(a) For the signal $\mathrm{x}(\mathrm{t})$ illustrated in Fig. 1 , sketch $x(t-4)$; $x(2 t-4)$; and $x(2-t)$ Fig. 1 (b) The unit impulse response of an continuous time LTI system is $h(t)=$ [$\left.2 e^{-3 t}-e^{-2 t}\right] u(t)$. Find this system's response $\mathrm{y}(\mathrm{t})$ in time domain if the input $\mathrm{x}(\mathrm{t})$ is $e^{-t} u(t)$	4+6	CO1
Q 6	(a) State sampling theorem. (b) Determine the Nyquist rate for the following signals:	$2+3+5$	CO 2

	(i) $x(t)=\frac{\sin 5 \pi t}{\pi t} \cos 2 \pi t+\frac{\sin 2 \pi t}{\pi t} \sin 8 \pi t$ and (ii) $x(t)=5+7 \cos 2 \pi t+6 \sin ^{2} 8 \pi t$ (c) Determine the continuous-time signal corresponding to the following Fourier transform shown in Fig. 2. Fig 2(a) Magnitude response (b) Phase response		
Q 7	(a) Find the inverse Laplace transform of the following function $X(s)=\frac{2 s^{2}-2 s-6}{(s+1)(s-1)(s+2)}$; If Region of Convergence (ROC) is: (i) $\operatorname{Re}\{\mathrm{s}\}>1$, (ii) $\operatorname{Re}\{s\}<-2$, (iii) $-2<\operatorname{Re}\{s\}<-1$ and (iv) $-1<\operatorname{Re}\{s\}<-1$ (b) The step response of a certain initially relaxed device is $y(t)=\left(1-\frac{1}{2} e^{-t / 3}\right) u(t)$. Determine the impulse response of the system of two such devices connected in cascade. OR (c) Consider an LTI system for which the system function $H(s)$ has the pole-zero pattern shown in Fig. 3 Fig. 3 (i) Indicate all possible ROCs that can be associated with this pole-zero pattern. (ii) For each ROC identified in part (a), specify whether the associated system stable and/or causal.	5+5	CO 3

Q 8	(a) Determine the convolution of the following pair of the signals by using Ztransform: $x_{1}[n]=\left(\frac{1}{4}\right)^{n} u[n-1]$ and $x_{2}[n]=\left(1+\left(\frac{1}{2}\right)^{n}\right) u[n]$ (b) Find the discrete-time Fourier series for the following periodic signal as shown in Fig. 4 Fig. 4	6+4	CO4
Q 9	(a) Two LTIC systems have impulse response functions given by $h_{1}(t)=$ $(1-t)\left[u(t)-u(t-1)\right.$ and $h_{2}(t)=t[u(t+2)-u(t-2)$ (i) Carefully sketch the functions $h_{1}(t)$ and $h_{2}(t)$. (ii) Assume that the two systems are connected in parallel as shown in Fig. 5(a). carefully plot the equivalent impulse response function, $\mathrm{h}_{\mathrm{p}}(\mathrm{t})$. (ii) Assume that the two systems are connected in cascade as shown in Fig. 5(b). carefully plot the equivalent impulse response function, $h_{s}(t)$. Fig. 5(a) Fig. 5(b) (b) The complex exponential Fourier series representation of a signal $x(t)$ over the interval $(0, \mathrm{~T})$ is $x(t)=\sum_{n=-\infty}^{\infty} \frac{3}{4+(n \pi)^{2}} e^{j n \pi t}$. Determine (i) the numerical value of T ; (ii) the numerical value of A , if one of the components of $\mathrm{x}(\mathrm{t})$ is $\mathrm{A} \cos 5 \pi \mathrm{t}$.	12+8	CO1 $\mathrm{CO} 2$
Q 10	(a) Consider a causal LTI system that is characterized by the difference equation: $y[n]-\frac{3}{4} y[n-1]+\frac{1}{8} y[n-2]=2 x[n] \quad$ find the unit impulse response of the system and also determine the output response if $x[n]=\left(\frac{1}{4}\right)^{n} u[n]$	10+10	CO3

