Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, December 2019**

Course: Signals & Systems **Program: B Tech ECE/ Mechatronics Course Code: ECEG2010**

Semester: III Time 03 hrs. Max. Marks: 100

Instructions:

- Attempt all questions as per the instruction. •
- Assume any data if required and indicate the same clearly. •
- Unless otherwise indicated symbols and notations have their usual meanings. •
- Strike off all unused blank pages •

SECTION A (20 Marks)

S. No.		Marks	СО
Q 1	Statement the stability and causality of continuous time LTI system. Check stability of continuous-time system having the following impulse responses: $h(t) = te^{-t}u(t)$	5	CO1
Q 2	Given the relationships $y(t) = x(t)*h(t)$ and $z(t) = x(3t)*h(3t)$ and given that $x(t)$ has the Fourier transform $X(\omega)$ and $h(t)$ has the Fourier transform $H(\omega)$, use Fourier transform properties to show that $z(t)$ has the form $z(t) = Ay(Bt)$. And also determine the values of A and B	5	CO2
Q 3	Find the Laplace transform of $x(t) = \begin{cases} e^{t} \sin(2t); & t \le 0\\ 0; & t > 0 \end{cases}$ Indicate the location of its poles and its region of convergence.	5	CO3
Q 4	Let $x[n] = (-1)^n u[n] + \alpha^n u[n - n_0]$. Determine the constraints on the complex number α and the integer n_0 , geiven that the ROC of X(z) is $1 < z < 2$	5	CO4
	SECTION B (40 Marks)		
Q 5	(a) For the signal x (t) illustrated in Fig.1, sketch $x(t-4)$; $x(2t-4)$; and $x(2-t)$ fig. 1 (b) The unit impulse response of an continuous time LTI system is $h(t) = [2e^{-3t} - e^{-2t}]u(t)$. Find this system's response y (t) in time domain if the input x (t) is $e^{-t}u(t)$	4+6	CO1
Q 6	(a) State sampling theorem.(b) Determine the Nyquist rate for the following signals:	2+3+5	CO2

