Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019 Course: \quad Engineering Mechanics (MECH 2019) Semester: IIII Programme: B.Tech Civil, Mechanical, Mechatronics, Electrical, APE Gas, CERP, Time: 03 hrs. Max. Marks: 100 Instructions:			
SECTION A			
S. No.		Marks	CO
Q 1	State varignon's principle. Enlist its applications.	4	CO1
Q-2	Draw the FBD of the beam shown into the figure	4	CO1
Q-3	Motion of particle is defined by $\mathrm{X}=6 \mathrm{t}^{2}-8+40 \cos \pi \mathrm{t}$ where x and t expressed in meters and seconds. Find position, velocity and acceleration when $t=6$ seconds	4	CO1
Q-4	State the principle of virtual work. Show the applications of principle of virtual work.	4	CO1
Q-5	Find the natural frequency of vibration for the spring and mass system shown below	4	CO1

SECTION B			
Q-6	Two smooth cylinders with diameter 250 mm and 400 mm respectively. Are kept in a groove with the slanting surfaces making an angle of 60° and 30° respectively. Determine reactions at contact point A and B	10	CO2
Q-7	Derive the expression for lifting, lowering and self-locking of weight in simple screw jack.	10	CO1
Q-8	Find the moment of inertia of shaded area with respect to centroidal horizontal axis.	10	CO2
Q-9	A boy throws a ball so that it may just clear a wall of 3.6 m height. The boy is at a distance of 4.8 m from the wall. The ball was found to hit the ground at a distance of 3.6 m on the other side of the wall. Find the least velocity with which the ball can be thrown.	10	CO-3

| | A car accelerates from the rest at a constant rate of α for some time after which it
 decrease at a constant rate of β to come to rest. If the total time is t seconds evaluate i)
 maximum velocity reached and ii) total distance travelled. | |
| :--- | :--- | :--- | :--- | :--- |
| Q-10 | a)A man raises a 10 kg joist of length 4m by pulling on rope shown in figure.
 Find the tension in the rope using principle of virtual work. | |

