
-				
Name:				
Enrolment No.:		UNIVERSITY WITH A PURPOSE		
	UNIVERSITY OF PETR	OLEUM AND ENERGY STUDIES		
	End Semester E	xamination, December 2019		
Course	: Transport Phenomena	Semester	: III	
Program			: 03 hrs.	
Course	Code: CHCE2014	Max. Marks	: 100	
Instruct	ions: (i) THIS IS AN OPEN BOOKS AN	D NOTES EXAM (PRIOR PERMISSION	I TAKEN	[].
, <u>,</u>		R ALONG WITH YOUR ANSWER SCR		
S	ECTION A (NO QUESTIONS HERE SI	NCE IT IS AN OPEN BOOKS AND NOT	ES EXAN	A)
S. No.			Marks	СО
Q	X		-	CO1
S	ECTION B (NO QUESTIONS HERE SI	NCE IT IS AN OPEN BOOKS AND NOT	ES EXAN	A)
Q	Х		-	CO4
	SECTION-C (<u>ALL</u> THREE QUEST	TIONS IN SECTION C ARE COMPULSO	DRY)	
Q 1	A cyclone (tornado) has a tangential velo by	city, v_{θ} (only , i. e., v_z and v_r are zero), given		
	$v_{\theta} = K/r$; for $r \ge R_1$			
		Ľ		
		R. A. R. A. R. A. B. Y. D. A. X. Y. D. X. X. X. X. X. X. X. X. X. X. X. X. X.	Marks	CO5
		.cfim		
	and $v_{\theta} = \omega r$; for $r \leq R_1$			
	$V_{\theta} = \omega I, 10I I \geq N$			

	where, K and ω are constants.	
	(a) Assuming that the θ velocity is continuous at $r = R_1$, obtain the relation between <i>K</i> and ω . (7)	
	(b) The pressure outside the domain of the cyclone, i.e., for $r \ge R_2$, is 1 atm. Calculate the pressure at a radius, <i>r</i> , in the outer region, i.e., $R_1 \le r \le R_2$. Assume that the Engineering Bernoulli Equation applies to any two points, A and B, in this region (assume $z_A = z_B$) and also assume $w_1 = 0$). (8)	
	(c) If the outer pressure $(r \ge R_2)$ is atmospheric, is the pressure inside at $r \le R_2$, lower or higher than 1 atm. (7)	
	(d) The pressure in the <i>core</i> of the cyclone, for $r \le R_1$ (where $v_0 = \omega r$ and there are <i>no</i> shear stresses) is given by	
	$p_{\rm P} - p_{\rm Q} = \rho \omega^2 (r_P^2 - r_Q^2)/2$	
	Find the pressure at $r = R_1/2$. Is it lower than the pressure at $r = R_1$. (8) (<i>Total 30 Points</i>)	
Q 2	In one of the refrigerator brands, the ' <i>heat</i> ' picked up from the <i>inside</i> of the refrigerator is dissipated at the back through a large steel plate (cross section shown in the diagram). The outer temperature of the pipe (carrying the hot refrigerant) is T_1 . Write down the thermal energy balance for the plate. Make sure you give the differential equation (25 Points) as well as ALL the boundary conditions (10 points). Assume the heat transfer coefficient from the plate to the surrounding air is a constant, <i>h</i> . Also, assume steady state.	
	Tair Do Tair	
	(Total 35 Points)	

* * *