Name: Enrolment No:								
Enrolment No:								
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES								
	End Semester Examination, Dec 2019							
Course Progra	III							
Time: 3 hrs. Max. Marks		100						
Instructions: answer all the questions. Internal choice is given.								
	SECTION A							
S. No.		Marks	СО					
Q 1	Is all the energy in the ocean available for extraction? Justify your answer.	5	CO3					
Q 2	Compare Otto and Diesel cycle based on working and performance.	5	CO6					
Q 3	Helium gas expands from 125 kPa, 350 K and 0.25 m3 to 100 kPa in a polytropic process with $n = 1.667$. Is the work positive, negative or zero?	5	CO2					
Q 4	Ice cubes in a glass of liquid water will eventually melt and all the water approach room temperature. Is this a reversible process? Why?	5	CO3					
0.5	SECTION B							
Q 5	Prove that for an ideal gas $S_2 - S_1 = C_p \log\left(\frac{V_2}{V_1}\right) + C_v \log\left(\frac{P_2}{P_1}\right)$ The terms have their usual meanings as 'S' is entropy, 'P' is pressure, 'V' is volume	10	602					
	at thermodynamic state 1 and 2. Cp and Cv are the co-efficient at constant pressure and constant volume.	10	CO3					
Q 6	A reversible engine operates between temperatures T_1 and T ($T_1 > T$). A second reversible engine at the same temperature "T" receives the energy rejected from this	10	CO3					

	engine. The second engine rejects energy at temperature T_2 ($T_2 < T$). Show that		
	temperature T is the arithmetic mean of temperatures T_1 and T_2 if the engines produce the same amount of work output.		
	OR		
	It is given that temperature of the source and sink are equal to T_h and T_L . If the source		
	and sink are finite i.e. as the heat engine operates the temperature of source fall and		
	temperature of sink rises to an equilibrium temperature T_f . By the entropy principle		
	prove that the T_f is an geometric mean of T_H and T_L .		
Q 7	Explain the following terms: (a) Kelvin-Plank statement (b) Clausius statement ,		
	(c) Carnot theorem, (d) Clausius inequality and (e) Perpetual motion machine of	10	CO2
	second kind.		
Q 8	0.2 kg of air at 300°C is heated reversibly at constant pressure to 2066 K. Find the		
	available and unavailable energies of the heat added. Take $T_0 = 30^{\circ}C$ and $Cp =$	10	CO2
	1.0047 kJ/kg K.	-	
	SECTION-C		
Q 9	One kg of air initially at 0.7 MPa, 20°C changes to 0.35 MPa, 60°C by the three		
	reversible non-flow processes, as shown in Figure. Process 1: a-2 consists of a constant		
	pressure expansion followed by a constant volume cooling, process 1: b-2 an		
	isothermal expansion followed by a constant pressure expansion, and process 1: c-2		
	an adiabatic Expansion followed by a constant volume heating. Determine the change		
	of internal energy, enthalpy, and entropy for each process, and find the work transfer		
	and heat transfer for each process. Take $Cp = 1.005$ and $Cv = 0.718$ kJ/kg K and		
	assume the specific heats to be constant. Also assume for air $pv = 0.287$ T, where p is the pressure in kPa, y the specific volume in m^3/kg , and T the temperature in K		
	the pressure in kPa, v the specific volume in m ³ /kg, and T the temperature in K		
	/ Rev. isothermal	20	CO3
	0.7 MPa,		
	Rev. adiabatic		
	$\rightarrow v$		

Q 10.	A single cylinder engine with 0.25 liter swept volume and Compression Ratio =10, operates on a 4-stroke cycle. It is connected to a dynamometer, which gives a brake output torque reading of 15 N-m at 6000 rpm. The Air/Fuel=13, and mechanical efficiency of the engine is 98%. At the start of compression, the cylinder gas pressure is 100kPa, and temperature is 40°C. Calculate (1) air consumption rate (kg/h); (2) fuel consumption rate (kg/h); (3) brake thermal efficiency; (4) bsfc (kg/kW-h). (Ideal gas constant, R=0.287kJ/kg-K, fuel calorific value (Q_{LHV})=43000kJ/kg)	20	
	OR Following data is available for a four stroke petrol engine: Air fuel ratio 15.5 : 1, Calorific value of fuel 16000 kJ/kg, Air Standard Efficiency: 53%, Mechanical Efficiency: 80 %, Indicated Thermal Efficiency: 37 %, Volumetric Efficiency: 80 %, Stroke/bore ratio: 1.25, Suction pressure: 1 bar, Suction Temperature: 27 ^o C, RPM: 2000, Brake Power: 72 kW Calculate the followings: (a) Brake specific fuel consumption (b) Bore and stroke		CO6