Name: Enrolment No:			
Progra Semes Cours Cours Nos. 0 Instru 1) 2) 3) 4) 5)		x. Mark	03 Hrs 100
S. No.	SECTION - A(Answer ALL questions) $5 \times 4=20$ Marks	Marks	CO
Q 1	Explain crystal field splitting diagrams for $\mathrm{d}^{8}, \mathrm{~d}^{9}$ in octahedral and tetrahedral complexes.	4	CO1
Q 2	Predict the point groups for the following molecules: $\mathrm{POF}_{4}, \mathrm{CH}_{3}-\mathrm{CCl}_{3}, \mathrm{WOF}_{4}, \mathrm{AB}_{3}$	4	CO3
Q 3	Arrange the following as per Nephelauxtic series of ligands in the order of increasing nephelauxtic effect. $\mathrm{Fe}^{3+}, \mathrm{Fe}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Mn}^{2+} . \mathrm{Cr}^{3+}, \mathrm{Co}^{3+}, \mathrm{Pr}^{4+}, \mathrm{Ir}^{3+}$	4	C01
Q 4	Calculate the possible number of microstates for p^{5} and d^{6} electronic configuration	4	CO2
Q 5	How does the d^{1} electronic arrangement ground state term splits into various states	4	CO2
SECTION - B (Answer ALL questions) $5 \times 8=40$ Marks Internal choice is given for $\mathbf{Q} \mathbf{8} \& \mathbf{Q} 9$			
Q 6	Draw a neat diagram for depicting the Cartesian coordinates in $\mathrm{H}_{2} \mathrm{O}$ molecule.	8	CO3
Q 7	Calculate the CFSE as a function of Δ_{O} and Dq for low spin and high spin complexes of Fe (II) and Co (III).	8	CO1
Q 8	Find the representative matrices for $\mathrm{C}_{2} \mathrm{v}$. and deduce the same for representation matrices. OR What are the added advantages of Tanabe-Sugano diagrams for interpretation of metal complexes spectra?	8	$\begin{gathered} \mathrm{CO} \\ \& \\ \mathrm{CO} 2 \end{gathered}$

Q 9	Describe about Spin selection rule OR Draw the symmetry operations of the $\mathrm{C}_{3 \mathrm{~V}}$ point group with example molecule	8	$\begin{gathered} \mathrm{CO} 2 \\ \& \\ \mathrm{CO} \end{gathered}$
Q 10	Explain why many complexes exhibiting charge transfer bands in the visible region are unstable in sunlight	8	CO 2
SECTION - C (Answer ALL questions)Internal choice is given for $\mathbf{Q} 12$			
Q 11	a. Show diagrammatically the crystal field splitting in terms of Dq values in coplexes: (i) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ (ii) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ b. Draw the combined orgel energy diagram for two electron and two hole configurations	$\begin{gathered} 10+ \\ 10 \end{gathered}$	$\begin{gathered} \mathrm{CO} 1 \\ \& \\ \mathrm{CO} \end{gathered}$
Q 12	Construct the character table for $\mathrm{C}_{4 \mathrm{v}}$ for the $\mathrm{AB}_{4} \mathrm{X}$ type molecule with specific symmetry operation diagrams. Also deduce the matrix representation for $\sigma_{x z}, \sigma_{y z}$ using co-ordinates as bases. OR Describe and explain the Jahn-Teller effect in Octahedral complex of Cu^{2+}. Also describe the bonding in $\left[\mathrm{CoF}_{6}\right]^{3-}$ with molecular orbital theory	20	$\begin{gathered} \mathrm{CO3} \\ \& \\ \mathrm{CO} \end{gathered}$

