Name:			
Enrolme	Name: Enrolment No:		
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES		
a	End Semester Examination, December 2019		
Course: Advanced MathematicsSemester: ICourse Code: MATH 7002Time: 03 hrs.			
Programme: M.Tech (ROE)Max. Marks: 10			
6	ions: Attempt all questions from Section A (each carrying 4 marks); all questions from S		(each
	10 marks) and all questions from Section C (carrying 20 marks).		
	SECTION A		
S. No.		Marks	CO
Q1	Determine the value of $\Delta^{10}(1-ax)(1-bx^2)(1-cx^3)(1-dx^4)$.	4	CO1
Q2		4	CO1
	Evaluate $\int_{0}^{1.5} \frac{1}{1+x^3} dx$ using Simpson's 3/8 method, taking $h = 0.25$.		
Q3		4	CO3
	Determine the value of y at $x = 0.2$ for the differential equation $\frac{dy}{dx} = y + x^2$, $y(0) = 1$		
	by Euler's method with step size 0.1.		
Q4	The regression lines of y on x and x on y are respectively $y = ax + b$, $x = cy + d$.		
	Show that $\frac{\sigma_y}{\sigma_x} = \sqrt{\frac{a}{c}}$.	4	CO5
	λ		
Q5	Classify the following partial differential equations $(i) 2 u_{xx} + u_{xy} + 4 u_{yy} + u_x = 0$	4	CO4
	$(ii) 3u_{xx} - 6u_{xy} + 2u_{yy} - 7u_{y} = 0.$		
	SECTION B		
Q6	Determine a real root of $f(x) = x \sin x + \cos x = 0$ which is near $x = \pi$ correct to	10	001
	three decimal places by using Newton-Raphson's method.	10	CO1
Q7	From the table of half-yearly premium for policies maturing at different ages,		
	estimate the premium for a policy maturing at the age of 63:Age:4550556065	10	CO1
	Premium: 114.84 96.16 83.32 74.48 68.48.	10	001
	(in dollars)		
Q8	Fit a curve of the form $y = ae^{bx}$ by the method of least square to the data		
	x: 1 5 7 9 12	10	CO5
00	y: 10 15 12 15 21.		
Q9	Solve the differential equation $\frac{dy}{dx} = \log(x+y)$, $y(0) = 2$ by Euler's modified method	d	
	at $x = 1.2$ and 1.4 with $h = 0.2$.	10	CO3
	at $x = 1.2$ and 1.4 with $n = 0.2$.		
	OR	1	

Q9	Determine the values <i>y</i> of at the pivotal points of the interval (0,1) if <i>y</i> satisfies the		
	boundary value problem $y^{iv} + 81y = 81x^2$, $y(0) = y(1) = y^{"}(0) = y^{"}(1) = 0$. (Take n=3)	10	CO3
Q10 (A)	Solve the system of equations by Crout'smethod $3x + 2y + 7z = 4$, 2x + 3y + z = 5, $3x + 4y + z = 7$.	10	CO2
Q10 (B)	Determine the moment generating function, first four moments about mean and coefficient of skewness and kurtosis for Binomial distribution.	10	CO5
Q11	Solve the equation $u_{xx} + u_{yy} = -10(x^2 + y^2 + 10)$, over the square mesh with sides $x = 0, y = 0, x = 3, y = 3$ with $u = 0$ on the boundary for fifth iteration only with $h = k = 1$ by Liebmann's method.	20	CO4
	OR		
Q11 (A)	Solve the equation $u_{tt} = 4u_{xx}$, with $u(0,t) = 0$, $u(4,t) = 0$, $u_t(x,0) = 0$ and $u(x,0) = x(4-x)$ by finite difference method taking $h = 1$.	10	CO4
Q11 (B)	Solve the equation $u_t = u_{xx}, 0 \le x \le 1, t \ge 0$, with $u(0,t) = 0$; $u(1,t) = 0$ and $u(x,0) = \begin{cases} 2x & \text{for } 0 \le x \le \frac{1}{2} \\ 2(1-x) & \text{for } \frac{1}{2} \le x \le 1 \end{cases}$ by using Bender-Schmidt's method.	10	CO4