Name: Enrolment No:			
Course: Advanced Mathematics Semester: I Course Code: MATH 7002 Time: $\mathbf{0 3}$ hrs. Programme: M.Tech (ROE) Max. Marks: 100 Instructions: Attempt all questions from Section A (each carrying 4 marks); all questions from Section B (each carrying 10 marks) and all questions from Section C (carrying 20 marks).			
SECTION A			
S. No.		Marks	CO
Q1	Determine the value of $\Delta^{10}(1-a x)\left(1-b x^{2}\right)\left(1-c x^{3}\right)\left(1-d x^{4}\right)$.	4	CO1
Q2	Evaluate $\int_{0}^{1.5} \frac{1}{1+x^{3}} d x$ using Simpson's 3/8 method, taking $h=0.25$.	4	CO1
Q3	Determine the value of y at $x=0.2$ for the differential equation $\frac{d y}{d x}=y+x^{2}, y(0)=1$ by Euler's method with step size 0.1.	4	$\mathrm{CO3}$
Q4	The regression lines of y on x and x on y are respectively $y=a x+b, x=c y+d$. Show that $\frac{\sigma_{y}}{\sigma_{x}}=\sqrt{\frac{a}{c}}$.	4	CO5
Q5	Classify the following partial differential equations $\begin{aligned} & \text { (i) } 2 u_{x x}+u_{x y}+4 u_{y y}+u_{x}=0 \\ & \text { (ii) } 3 u_{x x}-6 u_{x y}+2 u_{y y}-7 u_{y}=0 .\end{aligned}$	4	CO4
SECTION B			
Q6	Determine a real root of $f(x)=x \sin x+\cos x=0$ which is near $x=\pi$ correct to three decimal places by using Newton-Raphson's method.	10	CO1
Q7	From the table of half-yearly premium for policies maturing at different ages, estimate the premium for a policy maturing at the age of 63:	10	CO1
Q8	Fit a curve of the form $y=a e^{b x}$ by the method of least square to the data $\begin{array}{lcccc} x: 1 & 5 & 7 & 9 & 12 \\ y: 10 & 15 & 12 & 15 & 21 . \\ \hline \end{array}$	10	CO5
Q9	Solve the differential equation $\frac{d y}{d x}=\log (x+y), y(0)=2$ by Euler's modified method at $x=1.2$ and 1.4 with $h=0.2$.	10	CO3
	OR		

Q9	Determine the values y of at the pivotal points of the interval $(0,1)$ if y satisfies the boundary value problem $y^{i v}+81 y=81 x^{2}, y(0)=y(1)=y^{\prime \prime}(0)=y^{\prime \prime}(1)=0$. (Take $\mathrm{n}=3$)	10	$\mathrm{CO3}$
SECTION-C			
Q10 (A)	Solve the system of equations by Crout'smethod $3 x+2 y+7 z=4$, $2 x+3 y+z=5,3 x+4 y+z=7$.	10	CO2
Q10 (B)	Determine the moment generating function, first four moments about mean and coefficient of skewness and kurtosis for Binomial distribution.	10	$\mathrm{CO5}$
Q11	Solve the equation $u_{x x}+u_{y y}=-10\left(x^{2}+y^{2}+10\right)$, over the square mesh with sides $x=0, y=0, x=3, y=3$ with $u=0$ on the boundary for fifth iteration only with $h=k=1$ by Liebmann's method.	20	CO4
	OR		
Q11 (A)	Solve the equation $u_{t t}=4 u_{x x}$, with $u(0, t)=0, u(4, t)=0, u_{t}(x, 0)=0 \quad$ and $u(x, 0)=x(4-x)$ by finite difference method taking $h=1$.	10	CO4
Q11 (B)	Solve the equation $u_{t}=u_{x x}, 0 \leq x \leq 1, t \geq 0$, with $u(0, t)=0 ; u(1, t)=0$ and $u(x, 0)=\left\{\begin{array}{ll}2 x & \text { for } 0 \leq x \leq \frac{1}{2} \\ 2(1-x) & \text { for } \frac{1}{2} \leq x \leq 1\end{array}\right.$ by using Bender-Schmidt's method.	10	CO4

