Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019			
Course: Physical Chemistry I		Semester: I	
Program: B.Sc. (H) Chemistry		Time 03	
Course Code: CHEM1004		Max. Marks: 100	
Number of pages: 2			
Instructions: Attempt all the questions. Internal choice is given in Q 9, Q 10 and Q 12.			
SECTION A			
S. No.		Marks	CO
Q 1	Calculate the total kinetic energy of 0.5 mol of an idea gas at $273 \mathrm{~K}\left(\mathrm{R}=8.314 \mathrm{JK}^{-1}\right.$ mol^{-1}) (Avagadro's number $6.023 \times 10^{-23} / \mathrm{mol}$).	4	CO1
Q 2	Benzene has a density of $0.879 \mathrm{~g} \mathrm{~cm}^{-3}$ and has a surface tension of $0.028 \mathrm{~N} \mathrm{~m}^{-1}$. What will be the difference of its heights in two capillaries of diameter 0.10 mm and 0.15 mm , respectively?	4	CO2
Q 3	The dissociation constant of formic acid and acetic acid are $1.77 \times 10^{-4} \mathrm{~mol} / \mathrm{dm}^{3}$ and $1.75 \times 10^{-5} \mathrm{~mol} / \mathrm{dm}^{3}$. Calculate the relative strengths of two acid and point out which one is stronger?	4	CO3
Q 4	Calculate the pH of a $3.2 \times 10^{-3} \mathrm{M}$ solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ in water at $25^{\circ} \mathrm{C}$.	4	CO1
Q 5	Explain plane of symmetry, axis of symmetry and centre of symmetry in crystal with relevant example.	4	CO1
SECTION B			
Q 6	Define buffer solution. Explain buffer action by taking example of basic buffer solution.	8	CO1
Q 7	Derive the relation between $\mathrm{K}_{\mathrm{h}}, \mathrm{K}_{\mathrm{w}}$ and K_{b} for the hydrolysis of salt of weak base and strong acid. Calculate the value of K_{h} if the dissociation constant for $\mathrm{NH}_{4} \mathrm{OH}$ at $25^{\circ} \mathrm{C}$ is $2.0 \times 10^{-5} \mathrm{~mol} /$ litre. $\left(\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14} \mathrm{~mol}^{2} /\right.$ litre $\left.{ }^{2}\right)$.	8	CO3
Q 8	Calculate the pressure exerted by 22 g of carbon dioxide in $0.5 \mathrm{dm}^{3}$ at 298.15 K using (a) the ideal gas law (b) van der Waals equation. Given ($a=363.76 \mathrm{kPa} \mathrm{dm}^{6} \mathrm{~mol}^{-2}$, and $\left.\mathrm{b}=42.67 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}, \mathrm{R}=8.314 \mathrm{kPa} \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$.	8	CO3
Q 9	The enthalpy of vaporization of cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ at its boiling point $80.75{ }^{0} \mathrm{C}$ is $385.15 \mathrm{~J} \mathrm{~g}^{-1}$. The density of liquid and vapor at this temperature are $0.719 \mathrm{~g} \mathrm{~cm}^{-3}$ and $0.002 \mathrm{~g} \mathrm{~cm}^{-3}$. (a) Calculate the value of $\mathrm{d} p / \mathrm{dT}$. (b) Estimate the boiling point at 740 mm Hg . OR	8	CO2

	What do you understand by root mean square velocity and molecular velocity of a gas? Also what is the relation between them.		
Q 10	If one litre of $0.05 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and one litre of 0.05 M KCl are mixed, will precipitation occur? Support your answer with suitable reason. $\left(\mathrm{Ksp}\right.$ of $\mathrm{PbCl}_{2}=1.7 \times 10^{-5} \mathrm{~mol}^{3} / \mathrm{liter}^{3}$) OR (a) Discuss the effects of nonvolatile impurities on vapor pressure and boiling point of a liquid. (b) What is Trouton's rule?	8	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} \end{aligned}$
SECTION-C			
Q 11	a) Calcium carbonate, CaCO_{3}, has solubility in water of $0.018 \mathrm{~g} /$ litre at $25^{\circ} \mathrm{C}$. Calculate the $\mathrm{K}_{\text {sp }}$ for CaCO_{3}. (M.W. of $\mathrm{CaCO}_{3}=100 \mathrm{~g} / \mathrm{mol}$). b) The first order diffraction pattern of Cu was obtained at an angle of 25°. Calculate the d-spacing between the diffraction of Cu -metal. (wavelength of X-ray $=1.54 \mathrm{~A}^{0}$) c) Calculate the pressure exerted by 10^{23} gas particles each of mass $10^{-22} \mathrm{~g}$ in a container of volume $1 \mathrm{dm}^{3}$. The root mean square speed is $10^{5} \mathrm{~cm} \mathrm{~s}^{-1}$. d) The refractive index of carbon tetrachloride for D -line of sodium has been found to be 1.4573 . Calculate its molar refraction if the density is $1.595 \mathrm{~g} / \mathrm{cm}^{3}$.	$\begin{gathered} 5+5+ \\ 5+5 \end{gathered}$	$\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO} 2 \\ & \mathrm{CO} \end{aligned}$
Q 12	a) Derive the Bragg's equation for diffraction of X-rays by crystal. b) Barium has a radius of 224 pm and crystallizes in a body-centred cubic structure. Calculate the edge length of the unit cell? c) Calculate the root mean square velocity of hydrogen at $27{ }^{\circ} \mathrm{C}$ and 500 mm pressure. d) The boiling point of n -heptane is $36^{\circ} \mathrm{C}$. Estimate its molar heat of vaporization assuming that it obeys Trouton's rule. OR a) Polonium exist as a simple cube. The edge of its unit cell is 334.7 pm . Calculate its density. (Atomic mass of Polonium $=210 \mathrm{~g} / \mathrm{mol}$ and Avagadro's number $\left.=6.023 \times 10^{-23} / \mathrm{mol}\right)$. b) Explain Frenkel and Schottky defects in ionic solids with appropriate examples. c) A steel ball with radius 0.1 cm and density $7.87 \mathrm{~g} \mathrm{~cm}^{-3}$ falls through a liquid of density $1.26 \mathrm{~g} \mathrm{~cm}^{-3}$ at a constant velocity of $10 \mathrm{~cm} \mathrm{~s}^{-1}$. Calculate the coefficient of viscosity of the liquid. d) A liquid rises to 1 cm in a glass capillary of radius r_{1}. How much will it rise if the cross-sectional area of the tube is (i) halved, (ii) doubled?	$\begin{aligned} & 5+5+ \\ & 5+5 \end{aligned}$	$\begin{aligned} & \text { CO1 } \\ & \text { CO2 } \\ & \text { CO3 } \end{aligned}$

