Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Physical Chemistry I Program: B.Sc. (H) Chemistry Course Code: CHEM1004 Number of pages: 2 Semester: I Time 03 hrs. Max. Marks: 100

Instructions: Attempt all the questions. Internal choice is given in Q 9, Q 10 and Q 12. SECTION A

<i>a</i>		[]	
S. No.		Marks	CO
Q 1	Calculate the total kinetic energy of 0.5 mol of an idea gas at 273 K (R = 8.314 JK ⁻¹ mol ⁻¹) (Avagadro's number 6.023 x 10 ⁻²³ /mol).	4	CO1
Q 2	Benzene has a density of 0.879 g cm ⁻³ and has a surface tension of 0.028 N m ⁻¹ . What will be the difference of its heights in two capillaries of diameter 0.10 mm and 0.15 mm, respectively?	4	CO2
Q 3	The dissociation constant of formic acid and acetic acid are $1.77 \times 10^{-4} \text{ mol/dm}^3$ and $1.75 \times 10^{-5} \text{ mol/dm}^3$. Calculate the relative strengths of two acid and point out which one is stronger?	4	CO3
Q 4	Calculate the pH of a 3.2×10^{-3} M solution of Ba(OH) ₂ in water at 25 ⁰ C.	4	CO1
Q 5	Explain plane of symmetry, axis of symmetry and centre of symmetry in crystal with relevant example.	4	CO1
	SECTION B		
Q 6	Define buffer solution. Explain buffer action by taking example of basic buffer solution.	8	CO1
Q 7	Derive the relation between K_h , K_w and K_b for the hydrolysis of salt of weak base and strong acid. Calculate the value of K_h if the dissociation constant for NH ₄ OH at 25 °C is 2.0 x 10 ⁻⁵ mol/litre. ($K_w = 1.0 \times 10^{-14} \text{ mol}^2/\text{litre}^2$).	8	CO3
Q 8	Calculate the pressure exerted by 22 g of carbon dioxide in 0.5 dm ³ at 298.15 K using (a) the ideal gas law (b) <i>van der Waals</i> equation. Given (a= 363.76 kPa dm ⁶ mol ⁻² , and b= 42.67 cm ³ mol ⁻¹ , R= 8.314 kPa dm ³ K ⁻¹ mol ⁻¹).	8	CO3
Q 9	The enthalpy of vaporization of cyclohexane (C_6H_{12}) at its boiling point 80.75 ${}^{0}C$ is 385.15 J g ⁻¹ . The density of liquid and vapor at this temperature are 0.719 g cm ⁻³ and 0.002 g cm ⁻³ . (a) Calculate the value of d <i>p</i> /dT. (b) Estimate the boiling point at 740 mm Hg.	8	CO2

	What do you understand by root mean square velocity and molecular velocity of a gas? Also what is the relation between them.		
Q 10	If one litre of 0.05 M Pb(NO ₃) ₂ and one litre of 0.05 M KCl are mixed, will precipitation occur? Support your answer with suitable reason. (Ksp of PbCl ₂ = $1.7 \times 10^{-5} \text{ mol}^3/\text{liter}^3$)	8	CO2 CO3
	OR (a) Discuss the effects of nonvolatile impurities on vapor pressure and boiling point of a liquid. (b) What is Trouton's rule?		
	SECTION-C		
Q 11	 a) Calcium carbonate, CaCO₃, has solubility in water of 0.018 g/litre at 25 °C. Calculate the K_{sp} for CaCO₃. (M.W. of CaCO₃ = 100 g/mol). b) The first order diffraction pattern of Cu was obtained at an angle of 25⁰. Calculate the d-spacing between the diffraction of Cu-metal. (wavelength of X-ray = 1.54 A⁰) c) Calculate the pressure exerted by 10²³ gas particles each of mass 10⁻²² g in a container of volume 1 dm³. The root mean square speed is 10⁵ cm s⁻¹. d) The refractive index of carbon tetrachloride for D-line of sodium has been found to be 1.4573. Calculate its molar refraction if the density is 1.595 g/cm³. 	5 + 5 + 5 + 5	CO1 CO2 CO3
Q 12	 a) Derive the Bragg's equation for diffraction of X-rays by crystal. b) Barium has a radius of 224 pm and crystallizes in a body-centred cubic structure. Calculate the edge length of the unit cell ? c) Calculate the root mean square velocity of hydrogen at 27 °C and 500 mm pressure. d) The boiling point of n-heptane is 36 °C. Estimate its molar heat of vaporization assuming that it obeys Trouton's rule. 		CO1 CO2 CO3
	 OR a) Polonium exist as a simple cube. The edge of its unit cell is 334.7 pm. Calculate its density. (Atomic mass of Polonium = 210 g/mol and Avagadro's number = 6.023 x 10⁻²³/mol). 		
	 b) Explain Frenkel and Schottky defects in ionic solids with appropriate examples. c) A steel ball with radius 0.1 cm and density 7.87 g cm⁻³ falls through a liquid of density 1.26 g cm⁻³ at a constant velocity of 10 cm s⁻¹. Calculate the coefficient of viscosity of the liquid. 		
	 d) A liquid rises to 1 cm in a glass capillary of radius r₁. How much will it rise if the cross-sectional area of the tube is (i) halved, (ii) doubled? 		