Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Thermal Utilities Program: M Tech Energy Systems (ES) Course Code: EPEC7027 Semester: I Time 03 hrs. Max. Marks: 100

Instructions: Read the question paper carefully before answering, Section B and C has one internal choice. SECTION A

S. No.		Marks	CO	
Q 1	What do you understand by Organic Rankine Cycle? Elaborate on some application areas for the same.	5 CO2		
Q 2	In the filling of a tank, why (physically) is the final temperature in the tank higher than the initial temperature?	5	CO1	
Q 3	Explain why Artificial Draught is more important in thermal power plant operation as compared to Natural Draught.	5 CO3		
Q 4	Is heat transfer across a finite temperature difference only irreversible if no device is present between the two to harvest the potential difference?	5	CO1	
	SECTION B			
Q 5	Draught produced by chimney is 2 cm of water column. Temperature of flue gas is 300°C and ambient temperature is 33°C. The flue gas formed per kg of fuel burnt is 24 kg. Neglect the losses and take the diameter of chimney as 1.75 m. Calculate: a. Height of Chimney in meters. b. Mass of flue gas flowing through the chimney in kg/min. Density of flue gases is given by: $\rho_g = \{\frac{m_a+1}{m_a}\} \frac{353}{T_g}$	10	CO4	
Q 6	Explain the working of Spreader Stoker Boiler with a neat flow diagram. Also explain why such systems are preferred over other types of stokers in Industrial applications. OR A boiler system is to be controlled so the total dissolved solids in the blowdown does not exceed $TDS_{BD} = 2000 \text{ mg/l}$ for a feed water (makeup) that has $TDS_F = 200 \text{ mg/l}$ TDS. Steam consumption, Q_s is 1000 kg/day. Calculate Boiler Blowdown.	10	CO2	

Q 7	Comment on Performance Evaluation for Furnaces, and elaborate on the major heat losses from a furnace, during a process operation. Use a neatly labelled concept diagram to explain the heat losses.	10	CO3
Q 8	 For the given figure evaluate the following: a. The Propulsion Energy Conversion Chain. b. Operation of the gas turbine engine with block diagram. c. Operation of Gas Turbines as applied to Thermal Power Generation Utilities 	10	CO5
	SECTION-C		
			-
Q 9	Convert model fan (b) performance to that of a full-size fan (a) with different speed and operating temperature as indicated below. Assume that the inlet pressure and gas molecular weight are the same for the model and full size fan.ParameterModel Fan (b)Full size Fan (a)Diameter, inches2080RPM1200900Temperature60°F (520°R)320°F (780°R)		
	The model fan performance curve is shown in the following figure: I = I = I = I = I = I = I = I = I = I =	20	CO4
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

		18000	5.2	28			
		24000	3.1	30			
Q 10	Explain F Plant Op be linked What do Spreader Further,	you understand by Ener the working of Battery perations. In that contex d with such systems.	ergy Storage? Storage systems and ho anical stoker? In that of help of a neat flow dia	ow it is critical to baland d Side Management (D context, explain the wo	SM) can orking of	20	CO5
	Boilers.						