Name: Enrolment No:			
Course: Finite Element Methods for Fluid Dynamics Semester: I Program: M. Tech CFD Time 03 hrs. Course Code: ASEG 7022 Max. Marks: 100 No.of pages:05 Instructions: Make use of sketch/plots to elaborate your answer. All sections are compulsory			
SECTION A (20 marks)			
S. No.		$\begin{gathered} \text { Mar } \\ \text { ks } \\ \hline \end{gathered}$	CO
Q 1	State the finite element equation for a two dimensional triangular element placed in the Cartesian coordinate with origin on one side of the element.	[04]	CO1
Q 2	Determine the shape functions for the five-node rectangular element shown in the fig.	[04]	CO2
Q 3	Explain the various shapes of finite elements that can be utilized with classification for one, two and three dimensional elements. Sketch clearly giving details of the corner and side nodes.	[04]	CO1
Q 4	Given the following stress tensor $\sigma=\left[\begin{array}{lll} 10 & 20 & 30 \\ 20 & 40 & 50 \\ 30 & 50 & 60 \end{array}\right]$ Calculate the traction vector on a plane with unit normal $\boldsymbol{n}=(0.100,0.700,0.707)$	[04]	CO2
Q 5	Show that starting with: $\epsilon_{\mathrm{ijk}} \epsilon_{\mathrm{lmn}}=\delta_{\mathrm{il}}\left(\delta_{\mathrm{jm}} \delta_{\mathrm{kn}}-\delta_{\mathrm{jn}} \delta_{\mathrm{km}}\right)+\delta_{\mathrm{im}}\left(\delta_{\mathrm{jn}} \delta_{\mathrm{kl}}-\delta_{\mathrm{jl}} \delta_{\mathrm{kn}}\right)+\delta_{\mathrm{in}}\left(\delta_{\mathrm{j} 1} \delta_{\mathrm{km}}-\delta_{\mathrm{jm}} \delta_{\mathrm{kl}}\right)$ and multiplying both sides by δ_{il} produces:	[04]	CO 2

	$\epsilon_{\mathrm{ijk}} \epsilon_{\mathrm{imn}}=\delta_{\mathrm{jm}} \delta_{\mathrm{kn}}-\delta_{\mathrm{jn}} \delta_{\mathrm{km}}$		
SECTION B (40 marks)			
Q 6	Determine the temperature distribution of the flat plate as shown below using finite element analysis. Assume one-dimensional heat transfer, steady state, no heat generation and constant \quad thermal conductivity. The two surfaces of the plate are maintained at constant temperatures of $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$, respectively.	[10]	CO3
Q 7	For a 4-noded rectangular element shown in fig. Calculate the temperature at point (7, 4). The nodal values of the temperatures are $\mathrm{T} 1=42^{\circ} \mathrm{C}, \mathrm{T} 2=54^{\circ} \mathrm{C}$ and $\mathrm{T} 3=56^{\circ} \mathrm{C}$ and $\mathrm{T} 4=$ $46^{\circ} \mathrm{C}$. Also determine 3 point on the $50^{\circ} \mathrm{C}$ contour line. All dimensions are in cm .	[10]	CO4
Q 8	Consider a uniform rod subjected to a uniform axial load as shown in fig. The deformation of the bar is governed by the differential equation; $A E \frac{d^{2} u}{d x^{2}}+q_{0}=0$, and the boundary conditions; $u(0)=0, \frac{d u}{d x}_{x=L}=0$.	[10]	CO

Q 9	Consider a 1 mm diameter, 50 mm long aluminum pin fin as shown in the fig. that is used to enhance the heat transfer from a surface wall maintained at $300^{\circ} \mathrm{C}$. The governing differential equation and the boundary conditions are given by, $k \frac{d^{2} T}{d x^{2}}=\frac{P h}{A_{c}}\left(T-T_{\infty}\right) ; \quad T(0)=T_{w}=300^{\circ} C, \quad \frac{d T}{d x}_{(\mathrm{L})}=0$ Let $k=200 \mathrm{~W} / \mathrm{m} /{ }^{\circ} \mathrm{C}$ for aluminum, $h=20 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}, T_{\infty}=30^{\circ} \mathrm{C}$. Estimate the temperature distribution in the fin at 10 equal points using the Galerkin residual method using an appropriate polynomial trial function. OR Consider a simply supported beam under uniformly distributed load as shown in fig. The governing differential equation and the boundary conditions are given by; $E I \frac{d^{4} v}{d x^{4}}-q_{0}=0 ; \quad v(0)=0, \frac{d^{2} v}{d x^{2}}(0)=0, v(L)=0, \frac{d^{2} v}{d x^{2}}(L)=0$ Find the approximate solution using the point collocation technique at $x=L / 2$.	[10]	CO3

