


Name: Enrolme	ent No: UNIVERSITY WITH A PURPOSE	• • • • • •				
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES						
End Semester Examination, December 2019						
Course: Finite Element Methods for Fluid Dynamics Semester: I						
Program: M. Tech CFD Time 03 hrs.						
Course Code: ASEG 7022 Max. Marks: 1		s: 100				
No.of pa						
Instruct	tions: Make use of sketch/plots to elaborate your answer. All sections are compuls SECTION A (20 marks)	bry				
C N-		M				
S. No.		Mar ks	CO			
Q 1	State the finite element equation for a two dimensional triangular element placed in t					
	Cartesian coordinate with origin on one side of the element.	[04]	CO1			
Q 2	Determine the shape functions for the five-node rectangular element shown in the fig.	[04]	CO2			
Q 3	Explain the various shapes of finite elements that can be utilized with classification f	or				
	one, two and three dimensional elements. Sketch clearly giving details of the corner a side nodes.	id [04]	CO1			
Q 4	Given the following stress tensor					
	$\sigma = \begin{bmatrix} 10 & 20 & 30 \\ 20 & 40 & 50 \\ 30 & 50 & 60 \end{bmatrix}$ Calculate the traction vector on a plane with unit normal $\mathbf{n} = (0.100, 0.700, 0.707)$	[04]	CO2			
Q 5	Show that starting with:					
	$\epsilon_{ijk}\epsilon_{lmn} = \delta_{il}(\delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}) + \delta_{im}(\delta_{jn}\delta_{kl} - \delta_{jl}\delta_{kn}) + \delta_{in}(\delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl})$	[04]	CO2			
	and multiplying both sides by δ_{il} produces:					

	$\epsilon_{ijk}\epsilon_{imn}=\delta_{jm}\delta_{kn}-\delta_{jn}\delta_{km}$		
	SECTION B (40 marks)		
Q 6	Determine the temperature distribution of the flat plate as shown below using finite element analysis. Assume one-dimensional heat transfer, steady state, no heat generation and constant thermal conductivity. The two surfaces of the plate are maintained at constant temperatures of 100°C and 0° C, respectively.	[10]	CO3
Q 7	For a 4-noded rectangular element shown in fig. Calculate the temperature at point (7, 4). The nodal values of the temperatures are $T1 = 42^{\circ}C$, $T2 = 54^{\circ}C$ and $T3 = 56^{\circ}C$ and $T4 =$ $46^{\circ}C$. Also determine 3 point on the 50°C contour line. All dimensions are in cm.	[10]	CO4
Q 8	Consider a uniform rod subjected to a uniform axial load as shown in fig. The deformation of the bar is governed by the differential equation; $AE \frac{d^2u}{dx^2} + q_0 = 0$, and the boundary conditions; $u(0) = 0$, $\frac{du}{dx_{x=L}} = 0$.	[10]	CO3

