Name: Enrolm	nent No:			
	UNIVERSITY OF PETROLEUM AND ENERGY STU	DIES		
D	End Semester Examination, December 2019	T		
Programme Name:M. Tech. CFDSemesteCourse Name:Computational Gas DynamicsTime			er : I : 03 hrs.	
Course Code : ASEG 7020 Max. M				
Nos. of	page(s) : 03			
Instruc	tions: Assume any missing data appropriately.			
	SECTION A			
S. No.		Marks	CO	
Q 1	Discuss the condition on wave speeds for the occurrence of an expansion wave in	a 4		
	one-dimensional space.		CO1	
Q 2	Find the conservative numerical flux $f_{i+1/2}^n$ of the Roe's first order upwind method.	4	CO3	
Q 4	Using the exact Riemann solver, write expressions for the fluxes at the cell interface	e 4		
Q ·	Au(x=0) in terms of left and right states for various wave speeds.		CO2	
	$\pi u(x=0)$ in terms of fert and right states for various wave speeds.		001	
Q 4	Project a first order upwind method for the linear advection equation using way	e 4	CO3	
	speed splitting.			
Q 5	The unsteady Euler Equations have a full wave description. Justify	4	C01	
	SECTION B			
Q 6	For a Roe's approximate Riemann problem for the Euler problem is given as	10	CO3	
	du du			
	$\frac{\partial \boldsymbol{u}}{\partial t} + A_{RL} \frac{\partial \boldsymbol{u}}{\partial x} = 0$			
	where			
	$(\boldsymbol{u}_{I}) x < 0$			
	$\boldsymbol{u}(x,0) = \begin{cases} \boldsymbol{u}_L & x < 0 \\ \boldsymbol{u}_R & x > 0 \end{cases}$			
	Calculate the Dec every value it the call interface in terms of the value it is an	d		
	Calculate the Roe-average velocity at the cell interface in terms of the velocities ar	u		

	densities on the left and right of the cell interface.		
Q 7	Show that, for an isothermal flow, the one dimensional unsteady Euler equations can	10	CO1
	be written as		
	$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho u) = 0$		
	$\frac{\partial}{\partial t}(\rho u) + \frac{\partial}{\partial x}(\rho(u^2 + a^2)) = 0$		
	OR		
	Consider the one dimensional Euler Equations		
	$\frac{\partial \mathbf{u}}{\partial t} + A \frac{\partial \mathbf{u}}{\partial x} = 0,$		
	Show that the Jacobian Matrix A is diagonalizable, i.e. $Q_A^{-1}AQ_A = \Lambda$.		
Q 8	Prove that Van Leer's flux vector splitting satisfies $df' du \ge 0$ and $df' du \le 0$.	10	CO4
Q 9	For a steady state adiabatic flow, assuming <i>s=const.</i> , and $u+2a/(\gamma-1)=const.$, derive	10	
	an expression for the velocity u , speed of sound a and pressure p in the expansion fan		
	centered on $(x, t)=(0,0)$, which connects two steady uniform flows u_L and u_R , as a		CO2
	function of space and time.		
	SECTION-C		
Q 10	Find the solution to Roe's approximate Riemann problem at $t=0.01$ s if $p_L=100,000$	20	CO3
	N/m ² , ρ_L =1 kg/m ³ , u_L =100 m/s and p_R =10,000 N/m ² , ρ_R = 0.125 kg/m ³ , u_R =-50 m/s.		
Q 11	The 1-D unsteady Euler equations are given by	20	CO4
	$\boldsymbol{U}_t + [A]\boldsymbol{U}_x = 0$		
	where		
	$\boldsymbol{U} = [\rho, u, p]^T$		

and $[A] = \begin{bmatrix} u & \rho & 0 \\ 0 & u & 1/\rho \\ 0 & \rho a^2 & u \end{bmatrix}$ Find the eigenvalues and the left eigenvectors for this system of equations. *OR* Apply Roe's scheme to the following system of equations, $U_t + [A]U_x = 0$ where $U = [\rho, u, p]^T$ and $[u = \rho = 0$

$$[A] = \begin{bmatrix} u & \rho & 0 \\ 0 & u & 1/\rho \\ 0 & \rho a^2 & u \end{bmatrix}$$

and thus evaluate the Roe-averaged Jacobian matrix $[|A|] = [T][|\Lambda|][T]^{-1}$, if 0 < u < a.