Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019			
Course: Advanced Fluid Mechanics and Heat Transfer Semester: I Program: M.TECH CFD Course Code: ASEG 7019 Max. Marks: 100 No.of pages:03 Instructions: Heat Transfer Data Book is allowed			
SECTION A			
S. No.	Answer All the Question in the following section	Marks	CO
Q 1	What is the Reynolds number of water at $30^{0} \mathrm{C}$ flowing at $0.30 \mathrm{~m} / \mathrm{s}$ through a 5 mm diameter tube? If the pipe is now heated at what mean water temperature will the flow transition to turbulence. Assume the velocity of the flow remains constant.	5	CO
Q 2	Explain the concept of Fluid as a continuum. Viscosity in Fluids, Newtonian and Non Newtonian Fluids ?	5	CO1
Q 3	What is meant by subcooled and saturated boiling? Distinguish between nucleate and film boiling	5	CO2
Q 4	How does thermal radiation differ from other types of electromagnetic radiation? Define irradiation and radiosity?	5	CO1
SECTION B Answer all the Questions and Q 8 has Internal Choice			
Q 5	A steel tube having $\mathrm{k}=46 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$ has an inside diameter of 3.0 cm and a tube wall thickness of 2 mm . A fluid flows on the inside of the tube producing a convection coefficient of $1500 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$ on the inside surface, while a second fluid flows across the outside of the tube producing a convection coefficient of $197 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$ on the outside tube surface. The inside fluid temperature is $223{ }^{\circ} \mathrm{C}$ while the outside fluid temperature is $57^{\circ} \mathrm{C}$. Calculate the heat lost by the tube per meter of length.	10	CO 2
Q 6	A speedboat on hydrofoils is moving at $20 \mathrm{~m} / \mathrm{s}$ in a fresh water lake. Each hydrofoil is 3 m below the surface. Assuming as an approximation, frictionless, incompressible flow, find the stagnation pressure gauge at the front of each hydrofoil. At one point	10	CO1

	on a hydrofoil, the pressure is -75 kPa . Calculate the speed of the water relative to the hydrofoil at this point and the absolute water speed.		
Q 7	Derive and expression for the heat transfer in a laminar boundary layer on a flat plate under the condition $u=u_{\infty}=$ constant Assume that the temperature distribution is given by the cubic parabola relation. $\frac{\theta}{\theta_{\infty}}=\frac{T-T_{w}}{T_{\infty}-T_{w}}=\frac{3}{2} \frac{y}{\partial_{t}}-\frac{1}{2}\left(\frac{y}{\partial_{t}}\right)^{3}$ This solution approximates the condition observed in the flow of a liquid meter over a flat plate?	10	CO 2
Q 8	Water from a stationary nozzle impinges on a moving vane with turning angle $\theta=$ 120°. The vane moves away from the nozzle with constant speed $\mathrm{U}=20 \mathrm{~m} / \mathrm{s}$, and receives a jet that leaves the nozzle with speed $\mathrm{V}=50 \mathrm{~m} / \mathrm{s}$. The nozzle has an exit area of $0.008 \mathrm{~m}^{2}$. Find the force that must be applied to maintain the vane speed constant OR A tank of $0.1 \mathrm{~m}^{3}$ volume is connected to a high-pressure airline; both line and tank are initially at a uniform temperature of $20^{\circ} \mathrm{C}$. The initial tank gage pressure is 100 kPa . The absolute line pressure is 2.0 MPa ; the line is large enough so that its temperature and pressure may be assumed constant. The tank temperature is monitored by a fast response thermocouple. At the instant after the valve is opened, the tank temperature rises at the rate of $0.05^{\circ} \mathrm{C} / \mathrm{s}$. Determine the instantaneous flow rate of air into the tank if heat transfer is neglected.	10	CO 3
SECTION-CAnswer all the Questions and Q 10 has Internal Choice			
Q 9	Consider a long solid tube, insulated at the outer radius r_{2} and cooled at the inner radius r_{1}, with uniform heat generation $\mathrm{q}\left(\mathrm{W} / \mathrm{m}^{3}\right)$ within the solid. a. Obtain the general solution for the temperature distribution in the tube b. In a practical application a limit would be placed on the maximum temperature that is permissible at the insulated surface $\left(r=r_{2}\right)$. Specifying this limit as $\mathrm{T}_{\mathrm{s}, 2}$, Identify approximate boundary conditions that could be used to determine the arbitrary constants appearing in the general solution.	20	CO5

	Determine these constants and the corresponding form if the temperature distribution. c. If the coolant is available at a temperature T_{∞}, Obtain an expression for the convection coefficient that would have to be maintained at the inner surface to allow for operation at prescribed values of $\mathrm{T}_{\mathrm{s}, 2}$ and q .		
Q 10	A thin $40 \mathrm{~cm} \times 40-\mathrm{cm}$ flat plate is pulled at $2 \mathrm{~m} / \mathrm{s}$ horizontally through a 3.6 mm thick oil layer sandwiched between two plates, one stationary and the other moving at a constant velocity of $0.3 \mathrm{~m} / \mathrm{s}$, as shown in the figure. The dynamic viscosity of oil is 0.027 Pa.s. Assuming the velocity in each oil layer to vary linearly. Solve the Naiver-Stokes equation for the velocity profile between the plates. a. Plot the velocity profile and find the location where the oil velocity is zero. b. Determine the force that needs to be applied on the plate to maintain this motion. The engine cylinder of a motor cycle is constructed of 2024-T6 aluminum alloy and is of height $\mathrm{H}=0.15 \mathrm{~m}$ and outside diameter $\mathrm{D}=50 \mathrm{~mm}$. Under typical operating conditions the outer surface of the cylinder is at a temperature of 500 K and is exposed to ambient air at 300 K with a convention coefficient of $50 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Annular fins are integrally cast with the cylinder to increase heat transfer to the surroundings. Consider five such fins, which are of thickness $t=6 \mathrm{~mm}$, length $\mathrm{L}=20 \mathrm{~mm}$, and equally spaced. What is the increase in heat transfer due to use of the fins?	20	CO4

