Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Advanced Fluid Mechanics and Heat Transfer
Program: M.TECH CFD
Course Code: ASEG 7019
No.of pages:03
Instructions: Heat Transfer Data Book is allowed

Semester: I Time 03 hrs. Max. Marks: 100

	SECTION A		
S. No.	Answer All the Question in the following section	Marks	CO
Q 1	What is the Reynolds number of water at 30° C flowing at 0.30 m/s through a 5 mm diameter tube? If the pipe is now heated at what mean water temperature will the flow transition to turbulence. Assume the velocity of the flow remains constant.	5	CO3
Q 2	Explain the concept of Fluid as a continuum. Viscosity in Fluids, Newtonian and Non Newtonian Fluids ?	5	CO1
Q 3	What is meant by subcooled and saturated boiling? Distinguish between nucleate and film boiling	5	CO2
Q 4	How does thermal radiation differ from other types of electromagnetic radiation? Define irradiation and radiosity?	5	CO1
	SECTION B Answer all the Questions and Q 8 has Internal Choice		
Q 5	A steel tube having k=46 W/m.°C has an inside diameter of 3.0 cm and a tube wall thickness of 2 mm. A fluid flows on the inside of the tube producing a convection coefficient of 1500 W/m ² .°C on the inside surface, while a second fluid flows across the outside of the tube producing a convection coefficient of 197 W/m ² .°C on the outside tube surface. The inside fluid temperature is 223 °C while the outside fluid temperature is 57 °C. Calculate the heat lost by the tube per meter of length.	10	CO2
Q 6	A speedboat on hydrofoils is moving at 20 m/s in a fresh water lake. Each hydrofoil is 3 m below the surface. Assuming as an approximation, frictionless, incompressible flow, find the stagnation pressure gauge at the front of each hydrofoil. At one point	10	CO1

	on a hydrofoil, the pressure is -75 kPa. Calculate the speed of the water relative to		
	the hydrofoil at this point and the absolute water speed.		
Q 7	Derive and expression for the heat transfer in a laminar boundary layer on a flat plate		
	under the condition $u=u_{\infty}=$ constant Assume that the temperature distribution is given		
	by the cubic parabola relation.		
	$\frac{\theta}{\theta_{\infty}} = \frac{T - T_{w}}{T_{\infty} - T_{w}} = \frac{3}{2} \frac{y}{\partial_{t}} - \frac{1}{2} \left(\frac{y}{\partial_{t}}\right)^{3}$	10	CO2
	This solution approximates the condition observed in the flow of a liquid meter over		
	a flat plate?		
Q 8	Water from a stationary nozzle impinges on a moving vane with turning angle θ =		
	120° . The vane moves away from the nozzle with constant speed U=20 m/s, and		CO3
	receives a jet that leaves the nozzle with speed V =50 m/s. The nozzle has an exit		
	area of 0.008 m ² . Find the force that must be applied to maintain the vane speed		
	constant		
	OR		
	A tank of 0.1 m ³ volume is connected to a high-pressure airline; both line and tank	10	
	are initially at a uniform temperature of 20° C. The initial tank gage pressure is 100		
	kPa. The absolute line pressure is 2.0 MPa; the line is large enough so that its		
	temperature and pressure may be assumed constant. The tank temperature is		
	monitored by a fast response thermocouple. At the instant after the valve is opened,		
	the tank temperature rises at the rate of 0.05° C/s. Determine the instantaneous flow		
	rate of air into the tank if heat transfer is neglected.		
	SECTION-C Answer all the Questions and Q 10 has Internal Choice		1
Q 9	Consider a long solid tube, insulated at the outer radius r ₂ and cooled at the inner		
	radius r_1 , with uniform heat generation $q(W/m^3)$ within the solid.		
	a. Obtain the general solution for the temperature distribution in the tube	20	CO5
	b. In a practical application a limit would be placed on the maximum		
	temperature that is permissible at the insulated surface (r=r ₂). Specifying this	_~	
	limit as T _{s,2} , Identify approximate boundary conditions that could be used to		
	determine the arbitrary constants appearing in the general solution.		

	Determine these constants and the corresponding form if the temperature		
	distribution.		
	c. If the coolant is available at a temperature T_{∞} , Obtain an expression for the		
	convection coefficient that would have to be maintained at the inner surface		
	to allow for operation at prescribed values of $T_{s,2}$ and q.		
Q 10	A thin 40 cm \times 40-cm flat plate is pulled at 2 m/s horizontally through a 3.6 mm		
	thick oil layer sandwiched between two plates, one stationary and the other moving		
	at a constant velocity of 0.3 m/s, as shown in the figure. The dynamic viscosity of oil		
	is 0.027 Pa.s. Assuming the velocity in each oil layer to vary linearly. Solve the		
	Naiver-Stokes equation for the velocity profile between the plates.		
	a. Plot the velocity profile and find the location where the oil velocity is zero.		
	b. Determine the force that needs to be applied on the plate to maintain this		
	motion.		
	Fixed wall		
	the time watch		
	$h_1 = 1 \text{ mm}$ $V = 2 \text{ m/s}$ F	20	CO4
	$h_2 = 2.6 \text{ mm}$ $V_w = 0.3 \text{ m/s}$		
	Moving wall		
	(OR)		
	The engine cylinder of a motor cycle is constructed of 2024-T6 aluminum alloy and is		
	of height H=0.15 m and outside diameter D=50 mm. Under typical operating		
	conditions the outer surface of the cylinder is at a temperature of 500 K and is exposed		
	to ambient air at 300 K with a convention coefficient of 50 W/m^2 K. Annular fins are		
	integrally cast with the cylinder to increase heat transfer to the surroundings. Consider		
	five such fins, which are of thickness t=6 mm, length L=20 mm, and equally spaced.		
	What is the increase in heat transfer due to use of the fins?		