Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

.

Program Name: B.Sc. (H) Chemistry & Mathematics Course Name: Electricity and Magnetism Course Code: PHYS 1016 Nos. of pages: 2 Semester: I Time: 03 hrs. Max. Marks: 100

Instructions: 1) Mention Roll No at the appropriate place in the question paper.

2) Answers should be brief and concise.

SECTION A (20 marks)				
S. No.	All question of section A are compulsory	Marks	СО	
Q 1	For a position vector $\vec{r} = 2x\hat{\iota} + 3y\hat{j} + 4z\hat{k}$, Calculate div \vec{r}	4	CO1	
Q2	If the electric field is given by $\vec{E} = 3\hat{\iota} + 4\hat{j} + 8\hat{k}$, Calculate the electric flux through a surface of area 200 units lying in the y-z plane.	4	CO1	
Q3	What do you mean by magnetic field intensity? What is its unit?	4	CO2	
Q4	Define displacement current and write modified form of Ampere's Law.	4	CO4	
Q5	The self-inductance of a coil having 400 turns is 80 mH, calculate the magnetic flux through the cross-section of the coil corresponding to current of 4 mA. Calculate total flux linked with coil.	4	CO3	
Q 6	Question 9 consist of an internal choice What do you mean by curl of Vector field? Discuss its physical significance.	10	CO1	
Q 6 Q 7	What do you mean by curl of Vector field? Discuss its physical significance. Calculate the electric potential due to charged solid sphere at a point inside and	10 10		
	outside of charged solid sphere.	10	CO1	
Q 8	What is the physical significance of equation of Continuity and deduce the relation for it. What is the form of equation of continuity for steady current?	10	CO4	
Q 9	Define the phenomenon of self-induction and co-efficient of self-induction. What is unit of coefficient of self-induction? Derive the expression for co-efficient of self- induction for current loop of radius "r". OR State and explain the Faraday's law of electromagnetic induction. Find the magnitude of e.m.f. induced in a 200 turns coil with cross sectional area of 0.16 m ² if the magnetic field through the coil changes from 0.10 to 0.50 Wbm ⁻² at a uniform rate over a period of 0.01 seconds.	10	CO3	

	SECTION-C (40 marks)		
Q 10	 (Q10 is compulsory. Attempt any set of Q11 & 12) a) What do you mean by equipotential surface? Write its properties. Calculate the work done in carrying a test charge from one point to the other on the equipotential surface? 	10	CO1
	b) Write down Maxwell's equations and their physical significance in their differential and integral forms for both static and time varying fields.	10	CO4
Q 11	a) State the Bio - Savart Law. By using Biot–Savart Law, derive the magnetic field due to straight current carrying conductor.		
	b) State and prove Ampere's Circuital Law. By using Ampere's Law, find the out the magnetic field due to current carrying hollow cylinder of radius "a"; inside and outside the cylinder.	10 10	CO2 CO2
	OR		
Q 12	a) Derive the relation for magnetic field on the axis of current carrying circular coil by using Biot – Savart Law.	10	CO2
	b) What is solenoid? Calculate the magnetic field due to solenoid. Discuss the case when observation point lies in the middle and at one end of infinite length solenoid.	10	CO2