Name: Enrolment No:			
Course: PHYSICS I Semester: I Course Code: PHYS1020 Programme: BTech : APE UP, APE Gas, CERP, Mechanical Max. Marks: 100 Time: 03 hrs. Instructions: All questions are compulsory (Q9 and Q11 have internal choice) Total pages: 2			
SECTION A			
S. No.		Marks	CO
Q1.	Two coherent beams of wavelength $5000 \AA$ reaching a point would individually produce intensities 1.44 and 4.00 units. If they reach there together, the intensity is 0.9 units. Calculate the lowest phase difference between the beams.	4	CO1
Q2.	Calculate de Broglie wavelength of a relativistic electron moving with 0.2 c speed.	4	CO3
Q3.	Obtain the expectation value of momentum for ground state of a particle in 1-D box.	4	CO3
Q4.	Explain Bragg's law for X-ray diffraction.	4	CO4
Q5.	Determine the Miller indices of a plane parallel to the z-axis, which cut intercepts of 2 and $2 / 3$ along x-axis and y-axis respectively.	4	CO4
SECTION B			
Q6.	Describe absorption, spontaneous emission, and stimulated emission and establish a relationship between Einstein A and B coefficients.	10	CO1
Q7.	Describe step and Graded index optical fibers demonstrating the propagation of light ray in both the types. Prove that the distance between two successive reflections is $\sqrt{\left(\frac{n_{1}{ }^{2}}{(N A)^{2}}-1\right)}$, where d is the core diameter, n_{1} is the core refractive index and $N A$ is numerical aperture.	10	CO1
Q8.	What do you understand by Atomic Packing Factor (APF)? Obtain APF for FCC and BCC structures.	10	CO4
Q9.	An X ray photon is scattered by a target material. Obtain an expression for the shift in wavelength created for the incoming and outgoing photon. OR Define pair production and show that it cannot occur in free space, also find the minimum energy required for pair production to occur.	10	$\mathrm{CO3}$

SECTION-C			
Q10.	(a) Write the Differential form of Maxwell's equation in final form and using these equations obtain the electromagnetic wave equation in free space. (b) Find the displacement current density in a region where the electric field is $\boldsymbol{E}=10 \sin \left(1.0 \times 10^{10} t-1.57 \times 10^{7} x\right) \boldsymbol{j} \mathrm{kV} / \mathrm{m}$ (c) Discuss the Uncertainty Principle for microscopic particles and enlist some of its applications	10 5 5	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 2 \\ & \mathrm{CO} \end{aligned}$
Q11.	(a) Give the construction and working of a Solar Cell. (b) A proton and an electron have same de-Broglie wavelength. Which of them moves faster and which possess more kinetic energy? Justify your answer. OR (a) Derive the expression for the eigenvalue and eigen function of a particle of rest mass m_{0}, trapped in a one dimensional box of length L. (b) Discuss the properties of a well-behaved wave function. Find the probability of finding a particle trapped in a 1 D box of length L, between $0.25 L$ to $0.5 L$, in its ground state.	10 10 10 10	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{CO} \\ & \mathrm{CO} \\ & \mathrm{CO} \end{aligned}$

Physical constants: $h=6.63 \times 10^{-34} \mathrm{~J}-s, c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}, \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$

$$
\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m} \text {, mass of proton }=1.6726 \times 10^{-27} \mathrm{Kg}
$$

