Name: Enrolment No:			
Cours Progr Cours Instru (Assu	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019 Theory of Elasticity \& Plasticity M.Tech. Structural Engineering Code: CIVL 7002	$: 100$	
SECTION A			
S. No.		Marks	CO
Q 1	Prove the following Airy's stress functions and examine the stress distribution represented by them: a) $\Phi=A x^{2}+B y^{2}$ b) $\Phi=A x^{3}$ c) $\Phi=A\left(x^{4}-3 x^{2} y^{2}\right)$ d) $\Phi=A\left(x^{3}-3 x^{2} y^{2}\right)$ e) $\Phi=A x^{2} y^{2}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	CO2
SECTION B			
Q 2	The stress components at a point are given by the following array: $\left[\begin{array}{ccc} 10 & 5 & 6 \\ 5 & 8 & 10 \\ 6 & 10 & 6 \end{array}\right] M P a$ Calculate the Principal Stresses and Principal Planes.	10	CO1
Q 3	Using Polynomials, calculate the bending of cantilever beam loaded at the end.	10	CO2
Q 4	Develop Constitutive matrix for Tetragonal material. Using direction cosine matrix, Stress matrix, obtain number of elastic constants.	10	CO1
Q 5	Define different hardening rules for materials in case of plastic state. $\underline{\text { Or }}$ Obtain yield criteria of metals graphically in case of plastic state.	10	CO4
SECTION-C			
Q 6	An elliptical shaft of semi axis $\mathrm{a}=0.05 \mathrm{~m}, \mathrm{~b}=0.025 \mathrm{~m}$, and $\mathrm{G}=80 \mathrm{GPa}$ is subjected to a twisting moment of $1200 \Pi \mathrm{Nm}$. Determine the maximum shearing stress and the angle of twist per unit length. $\underline{\mathrm{Or}}$ Calculate torsional rigidity for elliptical section using stress function approach.	20	CO3
Q 7	A load $\mathrm{P}=70 \mathrm{kN}$ is applied to the circular steel frame shown in the figure. The rectangular cross section is 0.1 m wide and 0.05 m thick. Determine the tangential stress at point A and B	20	CO

