Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2019

Theory of Elasticity & Plasticity Semester: I Program: M.Tech. Structural Engineering Time 03 hrs.

Course Code: CIVL 7002 Max. Marks: 100

Answer all questions of Section A, B & C **Instructions:**

(Assume all the necessary data if necessary) (Internal Choice is there in Q 5-SectionB and Q 6-Section C) SECTION A			
S. No.		Marks	CO
Q 1	Prove the following Airy's stress functions and examine the stress distribution represented by them: a) $\Phi = Ax^2 + By^2$ b) $\Phi = Ax^3$ c) $\Phi = A(x^4 - 3x^2y^2)$ d) $\Phi = A(x^3 - 3x^2y^2)$ e) $\Phi = Ax^2y^2$	4 4 4 4	CO2
	SECTION B		
Q 2	The stress components at a point are given by the following array: $ \begin{bmatrix} 10 & 5 & 6 \\ 5 & 8 & 10 \\ 6 & 10 & 6 \end{bmatrix} MPa $ Calculate the Principal Stresses and Principal Planes.	10	CO1
Q 3	Using Polynomials, calculate the bending of cantilever beam loaded at the end.	10	CO2
Q 4	Develop Constitutive matrix for Tetragonal material. Using direction cosine matrix, Stress matrix, obtain number of elastic constants.	10	CO1
Q 5	Define different hardening rules for materials in case of plastic state. Or Obtain yield criteria of metals graphically in case of plastic state.	10	CO4
	SECTION-C		
Q 6	An elliptical shaft of semi axis $a=0.05m$, $b=0.025m$, and $G=80$ GPa is subjected to a twisting moment of 1200 Π N m. Determine the maximum shearing stress and the angle of twist per unit length. Or Calculate torsional rigidity for elliptical section using stress function approach.	20	CO3
Q 7	A load $P=70$ kN is applied to the circular steel frame shown in the figure. The rectangular cross section is 0.1m wide and 0.05m thick. Determine the tangential stress at point A and B	20	CO3

