

Q9.	A single cylinder, single acting air compressor delivers 10kg of air /min. from 1 bar and $27^{\circ} \mathrm{C}$ to 6 bar. The compression follows the law $\mathrm{pv}^{1.25}=\mathrm{C}$. determine; (a) Work required to compress and deliver 1 kg of air (b) Actual power required to run the compressor if the mechanical efficiency is 80% (c) Head lost through the cylinder wall per minute (d) Isothermal efficiency Take $\mathrm{c}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}, \mathrm{c}_{\mathrm{v}}=0.718 \mathrm{~kJ} / \mathrm{kgK}$ OR A two stage centrifugal compressor delivers $140 \mathrm{~m}^{3}$ of air per minute. The suction condition of air is 1 bar and $17^{\circ} \mathrm{C}$. The air is passed to intercooler after first stage of compression and cooled to $22^{\circ} \mathrm{C}$. If the pressure ratio of each stage is 2 and isentropic efficiency is 70%, find the I.P. required to drive the compressor.	10	CO 3
SECTION-C			
Q10.	A centrifugal fan running at 1500 rpm has inner and outer diameter of the impeller as 0.2 m and 0.24 m . The absolute and relative velocities of air at entry are $21 \mathrm{~m} / \mathrm{s}$ and $20 \mathrm{~m} / \mathrm{s}$ respectively and those at exit are $25 \mathrm{~m} / \mathrm{s}$ and $18 \mathrm{~m} / \mathrm{s}$ respectively. The flow rate is $0.6 \mathrm{~kg} / \mathrm{s}$ and the motor efficiency is 80%. Determine (a) the stage pressure rise (b) degree of reaction and (c) the power required to drive the fan. Assuming the flow to be incompressible with the density of air as $1.2 \mathrm{~kg} / \mathrm{m}^{3}$.	20	CO4
Q11.	A centrifugal compressor is desired to have a total pressure ratio 3.5:1. The inlet eye of the compressor impeller is 30 cm in diameter. The axial velocity at inlet is $130 \mathrm{~m} / \mathrm{s}$. and the mass flow is $10 \mathrm{~kg} / \mathrm{sec}$. the velocity in the delivery duct is $115 \mathrm{~m} / \mathrm{sec}$. the tip speed of the impeller is $450 \mathrm{~m} / \mathrm{sec}$. and runs at 16000 rpm with total head isentropic efficiency of 78% and pressure coefficient of 0.72 . The ambient conditions are 1.013 bar and $15^{\circ} \mathrm{C}$ calculate: (a) the static pressure ratio, (b) the static pressure and temperature at inlet and outlet of compressor, (c) work of compressor per kg of air, and (d) the theoretical power required. OR The following particulars refer to two- stage single acting air compressor: Capacity $4.5 \mathrm{~m}^{3}$ per minute measured under free conditions at $15^{0} \mathrm{C}$ and 1.013 bar. Delivery pressure $=17.2$ bar; suction pressure $=0.98$ bar. Temperature at the start of compression $=30^{\circ} \mathrm{C}$ Clearance volume of L.P. cylinder $=6 \%$ Index of compression $=1.2$, speed $=120 \mathrm{rpm}$ Assuming that the intercooler pressure is chosen such that the work is shared equally between the two cylinders, calculate: (a). the indicated power (b) the dimensions of L.P. cylinder if the bore $=$ stroke.	20	CO 3

