| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
| UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019 |  |  |  |
| Programme Name: M. Tech (Pipeline Engineering) Semester: $\mathbf{1}$ <br> Course Name : Numerical Methods in Engineering  <br> Time $\quad: \mathbf{0 3}$ hours  <br> Course Code $: \mathbf{: C H P L 7 0 0 3}$ Max. Marks: $\mathbf{1 0 0}$ <br> Nos. of page(s) :03  <br> Instructions:  <br> i. Use of scientific calculator is allowed for calculations.  <br> ii. Any pages used for rough work should be attach along with the answer script.  |  |  |  |
| SECTION A |  |  |  |
| S. No. |  | Marks | CO |
| Q 1 | Write the general expression for $\mathbf{3}^{\text {rd }}$ order Newton's interpolating polynomial. | 4 | CO1 |
| Q 2 | State the difference between LU decomposition with Gauss elimination method and Crout's decomposition method. | 4 | CO 2 |
| Q 3 | State the differences between bracketed and open method for finding the root (s) of an equation. | 4 | $\mathrm{CO3}$ |
| Q 4 | What do you mean by 'stiffness' of ordinary differential equations? | 4 | CO4 |
| Q 5 | What is the difference between Dirichlet and Neumann boundary condition? | 4 | CO5 |
| SECTION B |  |  |  |
| Q 6 | Use any step size, $h$, and numerically integrate the following using (i) trapezoidal method, and (ii) Simpson's $1 / 3$ rule to: $\int_{0}^{6} \frac{1}{1+x^{2}} d x$ <br> OR <br> Use $\mathbf{2}^{\text {nd }}$ order Lagrange interpolating polynomials to evaluate the value of $f(x)$ at $\boldsymbol{x}=$ $\mathbf{2}$, from the following data given, | 8 | CO1 |


| Q 7 | Use Gauss - Jordan method to solve the following simultaneous linear equations: $\begin{aligned} & 3 x_{1}+4 x_{2}+x_{3}=26 \\ & x_{1}+2 x_{2}+6 x_{3}=22 \\ & 6 x_{1}-x_{2}-x_{3}=19 \end{aligned}$ <br> Check your answers by substituting them into the original equations. | 8 | CO 2 |
| :---: | :---: | :---: | :---: |
| Q 8 | Determine the real roots of the function, $f(x)=4 x^{3}-6 x^{2}+7 x-2.3$, using false position method to locate the roots. Employ an initial guess of, $x_{l}=0$, and $x_{u}=1$ and make $\mathbf{3}$ iterations and calculate the approximate error, $\varepsilon_{a}$ for each iteration. | 8 | CO 3 |
| Q9 | Use Euler's method to numerically solve the following differential equation, $\frac{d y}{d x}=-2 x^{3}+12 x^{2}-20 x+8.5$ <br> From $x=0$ to $x=4$, with a step size $(h)$ of $\mathbf{1}$. The initial condition at $\mathrm{x}=0$ is $y=1$. If the true value of the solution at $x=4$ is $\mathbf{3 . 0 0 0 0}$. Find the true error at $x=4$. | 8 | CO 4 |
| Q 10 | Use the control-volume approach and derive the node equation for node (2, 2) in Fig. 1, and include a heat source at this point. The following constants are given as: $\Delta z=$ $0.25 \mathrm{~cm}, h=10 \mathrm{~cm}, k_{\mathrm{A}}=0.25 \mathrm{~W} / \mathrm{cm} \cdot \mathrm{C}$, and $k_{\mathrm{B}}=0.45 \mathrm{~W} / \mathrm{cm} \cdot \mathrm{C}$. The heat source comes only from material $\mathbf{A}$ at the rate of $6 \mathrm{~W} / \mathrm{cm}^{3}$. <br> Fig 1: A heated plate with unequal spacing, two materials, and mixed boundary conditions. | 8 | $\mathrm{CO5}$ |
| SECTION-C |  |  |  |
| Q 11 | Find the first and second derivative of the following tabulated data at the point, $x=$ 4 using (i) forward finite-divided difference, (ii) backward finite-divided difference, | 20 | $\mathrm{CO4}$ |



