Name:

Enrolment No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Programme Name: M. Tech (Pipeline Engineering) Course Name : Numerical Methods in Engineering Semester: 1

Max. Marks: 100

- Time: 03 hoursCourse Code: CHPL7003
 - Nos. of page(s) : 03

Instructions:

- i. Use of scientific calculator is allowed for calculations.
- ii. Any pages used for rough work should be attach along with the answer script.

	SECTION A		
S. No.		Marks	C0 C01
Q 1	Write the general expression for 3rd order Newton's interpolating polynomial.	4	
Q 2	State the difference between LU decomposition with Gauss elimination method and Crout's decomposition method.	4	CO2
Q 3	State the differences between bracketed and open method for finding the root (s) of an equation.	4	CO3
Q 4	What do you mean by 'stiffness' of ordinary differential equations?	4	CO4
Q 5	What is the difference between Dirichlet and Neumann boundary condition?	4	CO5
	SECTION B	1	
Q 6	Use any step size, <i>h</i> , and numerically integrate the following using (i) trapezoidal method, and (ii) Simpson's 1/3 rule to: $\int_{0}^{6} \frac{1}{1+x^{2}} dx$ OR Use 2 nd order Lagrange interpolating polynomials to evaluate the value of <i>f</i> (<i>x</i>) at <i>x</i> =	8	C01
	Use 2 nd order Lagrange interpolating polynomials to evaluate the value of $f(x)$ at $x = 2$, from the following data given, $ \begin{array}{c} X & f(x) \\ 1 & 0 \\ 4 & 0.60206 \\ 6 & 0.7782 \end{array} $		

Q 7	Use Gauss – Jordan method to solve the following simultaneous linear equations:		
	$3x_1 + 4x_2 + x_3 = 26$ $x_1 + 2x_2 + 6x_3 = 22$ $6x_1 - x_2 - x_3 = 19$ Check your answers by substituting them into the original equations	8	CO2
Q 8	Check your answers by substituting them into the original equations.		
Q o	Determine the real roots of the function, $f(x) = 4x^3 - 6x^2 + 7x - 2.3$, using false position method to locate the roots. Employ an initial guess of, $x_l = 0$, and $x_u = 1$ and make 3 iterations and calculate the approximate error, ε_a for each iteration.	8	CO3
Q 9	Use Euler's method to numerically solve the following differential equation, $\frac{dy}{dx} = -2x^3 + 12x^2 - 20x + 8.5$ From $x = 0$ to $x = 4$, with a step size (<i>h</i>) of 1 . The initial condition at $x = 0$ is $y = 1$. If the true value of the solution at $x = 4$ is 3.0000 . Find the true error at $x = 4$.	8	CO4
Q 10	Use the control-volume approach and derive the node equation for node (2, 2) in Fig. 1 , and include a heat source at this point. The following constants are given as: $\Delta z = 0.25 \text{ cm}$, $h = 10 \text{ cm}$, $k_A = 0.25 \text{ W/cm} \cdot \text{C}$, and $k_B = 0.45 \text{ W/cm} \cdot \text{C}$. The heat source comes only from material A at the rate of 6 W/cm ³ . 1 1 1 1 1 1 1 1	8	CO5
	SECTION-C		<u> </u>
Q 11	Find the first and second derivative of the following tabulated data at the point, $x = 4$ using (i) forward finite-divided difference, (ii) backward finite-divided difference,	20	CO4

	and (iii) centered finite-divided difference. Mention the error associated with each								
	of the formula you employ.								
	x	0	2	4	6	8			
	f(x)	1	7.3891	54.5982	403.4288	2980.9580			
Q 12	long thin rod w 0.85 cm ² /s, and equation is give Use Liebmann' a heat source o 1.5 for the weig	ith a leng $\rho = 2.7$ g en below s method ver the he ghting fac 75°C	th of 12 c g/cm ³ , step as: (Gauss-S eated plate tor and ite	m, at time (p size $(\Delta x) =$ $k \frac{\partial^2 T}{\partial x^2} =$ OR eidel) to solution e in Fig. 2. erate to $\varepsilon_s =$ $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}$ 100°C 3) (2, 3) (2, 2) (1) (2, 1) O°C	t) = 0.2 s. The 3 cm and time $\frac{\partial T}{\partial t}$ we the steady-st Employ over-r 25%. The equ T = 0 (3, 3) (3, 2) (3, 1) (3, 1)	re (<i>T</i>) distribution following values e step (Δt) = 0.1 s e ate heat equation elaxation with a ation is given be	: <i>k</i> = s. The n without value of low as:	20	CO5