Name: Enrolme	ent No:									
	UNIVERSITY WITH A PURPOSE									
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019										
Course: Program Course Instruct	Semester: I Time 03 hrs. Max. Marks: 100									
	tions: Attempt all Questions, Scientific calculator allowed. SECTION A									
S. No.		Marks	СО							
Q1	Find the root of the equation $\cos x = xe^x$ using the bisection decimal places.	n method correct to two 4M	CO3							
Q2	Evaluate $\Delta^{10}[(1-ax)(1-bx^2)(1-cx^3)(1-dx^4)]$	4M	CO1							
Q3	Evaluate $\int_0^1 \frac{1}{1+x} dx$, correct to three decimal places using t	rapezoidal rule. 4M	CO2							
Q4	Estimate the eigenvalues of the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ using the Gerschgorin bounds.	4M	CO4							
Q5	Using Taylor series method, find $y(0.1)$ correct to three decin $\frac{dy}{dx} = x^2y - 1, y(0) = 1$	mal places given that 4M	CO5							
	SECTION B									
Q 6	Transform the matrix $ \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix} to tridiagonal form by G$	Givens method. 10M	CO4							
Q7	Solve the heat conduction problem $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(x, 0) = \sin \pi x$, $0 \le x \le 1$, and u(0, t) = u(1, t) = 0.Use Bender-Schmidt's formula to com u(0.6, 0.04).	npute the value of	CO5							

Q8	The population of	of a town	in the decenr	nial census was	as given belo	w. Estimate the		
-	population for th Year: x Population:y (in thousands)			1911 81	1921 93	1931 101	10M	CO1
Q9	Solve the system of equations 20x + y - 2z = 17 $3x + 20y - z = -18$ $2x - 3y + 20z = 25$ by Gauss Saidel method							
	by Gauss-Seidal method. OR Solve the system of equations 10x + y - z = 11.19 x + 10y + z = 28.08 -x + y + 10z = 35.61 by Jacobi's iteration method.							CO4
	1			SECTION-	С			
Q 10a	Using the Jacobi method find the eigenvalues of the matrix $ \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix} $						10M	CO4
Q10b	Apply Runge-Kutta method to find approximate value of y for $x = 0.2$, in steps of 0.1, given that $\frac{dy}{dx} = x + y^2, y(0) = 1.$							CO5
Q11	Solve the equation $\nabla^2 u = -10(x^2 + y^2 + z^2)$ over the square with sides $x = 0 = y$, $x = 3 = y$ with $u = 0$ on the boundary and mesh length equal to one.							CO6

