Name: Enrolment No:			
Course: MTech. Semester: I Program: Applied Mathematics In Petroleum Engineering Time 03 hrs. Course Code: MATH 7001 Max. Marks: 100 Instructions: Attempt all Questions, Scientific calculator allowed.			
SECTION A			
S. No.		Marks	CO
Q1	Find the root of the equation $\cos x=x e^{x}$ using the bisection method correct to two decimal places.	4M	$\mathrm{CO3}$
Q2	Evaluate $\Delta^{10}\left[(1-a x)\left(1-b x^{2}\right)\left(1-c x^{3}\right)\left(1-d x^{4}\right)\right]$	4M	CO1
Q3	Evaluate $\int_{0}^{1} \frac{1}{1+x} d x$, correct to three decimal places using trapezoidal rule.	4M	CO 2
Q4	Estimate the eigenvalues of the matrix $A=\left[\begin{array}{rrr}1 & 2 & -1 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$ using the Gerschgorin bounds.	4M	CO 4
Q5	Using Taylor series method, find $y(0.1)$ correct to three decimal places given that $\frac{d y}{d x}=x^{2} y-1, \quad y(0)=1$	4M	CO5
SECTION B			
Q 6	Transform the matrix $\left[\begin{array}{rrr}1 & 2 & 3 \\ 2 & 1 & -1 \\ 3 & -1 & 1\end{array}\right]$ to tridiagonal form by Givens method.	10M	CO4
Q7	Solve the heat conduction problem $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ subject to the conditions $u(x, 0)=\sin \pi x, 0 \leq x \leq 1$, and $u(0, t)=u(1, t)=0$.Use Bender-Schmidt's formula to compute the value of $u(0.6,0.04)$.	10M	CO5

