Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2019

Programme Name: B.Tech (APEG, CERP, ME, APEUP) Semester: I
Course Name: Basic Electronics Engineering Time: 3Hr
Course Code: ECEG1002 Max. Marks: 100

Nos. of page(s) : 03

Instructions : Attempt all questions from Section (A) and (B) and only one from Section (C).

SECTION A

S. No.		Marks	CO
Q1	Explain the behavior of diode in forward biasing. Sketch the required circuit diagram and its output V-I characteristic with related terminology.	7	CO1
Q2	Develop the simplified Boolean expression for the following digital circuit:	7	CO4
Q3	What names are applied to the two types of BJT transistors? Sketch the basic construction of each and label the various minority and majority carriers in each.	8	CO3
Q4	Simplify the following Boolean expressions: a) $Y = (A + B + C). (A + B)$ b) $Y = AB + ABC + AB\overline{C}$	8	CO4
	SECTION B		
Q5	Explain the concept of dc and ac load line in case of transistor. What is the necessity of operating point and how it is located?	15	CO3

Q6	Consider the transistor ($\beta = 50$) circuit of Figure given below which has a resistance included between emitter and ground. Show that the transistor is operating in active mode. Calculate I _C , I _E and I _B . $I_C \downarrow \qquad $	15	
Q7	Convert the following numbers into corresponding number system a. $(A28.1F)_{16} = ()_{10}$ b. $(378.10)_{10} = ()_{8}$ c. $(431.6110)_{8} = ()_{16}$ d. $(1011000111)_{2} = ()_{GRAY\ CODE}$ e. $(B65.6A)_{16} = ()_{8}$ f. $(101011.1001)_{2} = ()_{16}$	15	CO4
Note: A	SECTION C .ttempt any one of the following:		
Q8	Given the information provided in Fig. determine: a. β b. V_{CC} c. R_B . 20 μ A R_B 2.7 μ C R_B 2.7 μ C R_B 2.7 μ C R_B	25	СОЗ

9	logicyfunction specified in truth	Use the Karnaugh map method to implement the minimum SOP expression for the logicyfunction specified in truth Table. Also solve the problem for a situation in						
	which the last six binary combination		ns a		de allowed. Output	-		
				D	X			
	0	0			0	_		
	0	0	0	1	1			
	0	0	1	0	1			
	0	0	1	1	0			
	0	1	0	0	0			
	0	1	0	1	0			
	0	1	1	0	1			
	0	1	1	1	1			
	1	0	0	0	1			
	1	0	0	1	0			
	1	0	1	0	1			
	1	0	1	1	0		25	
	1	1	0	0	1			
	1	1	0	1	1			
	1	1	1	0	0			
	1	1	1	1	1			
						-		