Name:						
Enrolme						
	UNIVERSITY OF PETROLEUM AND ENERGY ST					
	End Semester Examination, December 2018					
Programme Name:M. Tech. CFDSemesterCourse Name:Introduction to CFDTimeCourse Code:ASEG 7001Max. Max. Max. Max. Max. Max. Max. Max.						
	SECTION A					
S. No.		Marks	CO			
Q 1	 What are various applications of Computational Fluid Dynamics? Discuss importance of Computational Fluid Dynamics as a a. Research tool b. Design tool 	the 4	CO1			
Q 2	Write down second order accurate finite difference stencils for discretization of following derivatives. a. $\frac{\partial^2 u}{\partial y^2}$ b. $\frac{\partial u}{\partial y}$	of the 4	CO2			
Q 3	Define <i>numerical diffusion and dispersion</i> . Discuss the effect of numerical diffu and dispersion on the solution of the one-dimensional scalar wave equation usin explicit Forward in Time and Backward in Space (FTBS) scheme. Suggest met to alleviate the diffusive error.	g the	CO3			
Q 4	 Write formulae for approximation of surface integrals of fluxes over a covolume face using following methods. a. Trapezoidal Method b. Simpson's Method 	ontrol 4	CO2			
Q 5	Elucidate the need of grid and equation transformation for the solution flow over complex geometries using finite difference method.	4	CO2			

	SECTION B		
Q 6	Discuss the explicit McCormack time marching algorithm for the solution of		
	transient Euler equations in 2-dimensions.	10	CO3
Q 7	Analyze the stability of the following explicit for the solution of the scalar advection		
	equation hence deduce the stability criterion for this scheme.	10	CO3
	$u_i^{n+1} = \frac{u_{i+1}^n + u_{i-1}^n}{2} - c\frac{\Delta t}{\Delta x}\frac{u_{i+1}^n - u_{i-1}^n}{2}$		
Q 8	Consider the following system of equations		
	$\frac{\partial u_1}{\partial t} + \frac{\partial u_2}{\partial x} = 0,$ $\frac{\partial u_2}{\partial t} + \frac{\partial u_3}{\partial x} = 0,$ $\frac{\partial u_3}{\partial t} + 4\frac{\partial u_1}{\partial x} - 17\frac{\partial u_2}{\partial x} + 8\frac{\partial u_3}{\partial x} = 0.$ Classify this system of equations as hyperbolic or elliptic, based on the eigenvalue	10	C01
	method.		
Q 9	Derive the third order accurate finite difference stencil for the first order derivative		
Q)	$\left(\frac{\partial u}{\partial x}\right)_{i,j}$ using variable (<i>u</i>) values on one-sided points only.		
	OR		
	Consider the viscous flow of air over a flat plate. At a given station in the flow		
	direction, the variation of the flow velocity, u , in the direction perpendicular to the		
	plate (the y direction) is given at discrete grid points equally spaced in y direction		
	with $\Delta y = 2.54$ mm.	10	CO2
	y (mm) u (m/s)	10	
	0 0		
	2.54 45.72		
	5.08 87.41		
	7.62 125.0		
	Imagine that the values of u listed above are discrete values at discrete grid points		
	located at $y = 0, 2.54, 5.08$ and 7.62 mm the same nature as would be obtained from		

	a numerical finite difference solution of the flow field. For viscosity coefficient, μ		
	=1.7895 x 10^{-5} kg/m-s, using these discrete values; Calculate the shear stress at the		
	wall τ_w three different ways, namely:		
	a. Using a first order one sided difference		
	b. Using the second order one sided difference		
	c. Using the third order one sided difference		
	SECTION-C		
Q 10	Apply the law of conservation of momentum to an infinitesimally small control		
	volume of fluid fixed in space and deduce the momentum equation in divergence	20	CO1
	form. Transform the equation to integral form valid over a finite control volume Ω	20	C01
	with surface area S.		
Q 11	Consider the problem of source-free heat conduction in an insulated rod whose ends		
	are maintained at constant temperatures of 100 °C and 500 °C respectively. The one-		
	dimensional problem sketched in Figure below, is governed by		
	$\frac{d}{dx}\left(k\frac{dT}{dx}\right) = 0$		
	Calculate the steady state temperature distribution in the rod. Thermal conductivity k		
	equals 1000 W/m/K; cross-sectional area A is 10 x 10^{-3} m ² . Use at least 5 control		
	volumes with appropriate interpolation scheme.		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	CO4
	OR		
	Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ numerically, using the Gauss-Seidel		
	Iterative scheme with five-point discretization formula, for the following mesh with		
	uniform spacing and with boundary conditions as shown in the figure below. Obtain		

the results	correct	to	two c	lecimal	places	s by	iterating	g up	to five	steps	or	until		
convergence	ce.													
		0		0	0		0		400					
		0							400					
		0							400					
		0	1(00	100	1	100		400					