Name:		S						
Enrolme	ent No:	UNIVERSITY WITH A PURPOSE						
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES								
End Semester Examination, December 2019								
		on Laws Semester: I Time 03 hrs.						
Course Code: ASEG 7021		Max. Marks: 100						
-	pages: 04							
Instruct	tions: Make use of sketch/plots to elaborate your answer. All sections are c SECTION A (20 marks)	ompulsoi	ry					
C N								
S. No.			Marks	СО				
Q 1	Classify the steady two-dimensional velocity potential equation:							
	$\left(1-M^2 ight)\phi_{xx}+\phi_{yy}=0$							
			[04]	CO2				
	where M is mach number. Explain the physical meaning of various classificate based on M .	tions						
Q 2	Explain the algorithm of the Jacobi Iteration method applied to a parabolic	c partial						
	differential equation.		[04]	CO1				
Q 3	What is the stability requirement of an explicit equation produced from the equation $\frac{\partial u}{\partial t} = \propto \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} \right].$	e model	[04]	CO2				
	$\begin{bmatrix} 1 & \partial t & [\partial x^2 & \partial x^2] \end{bmatrix}$							
Q 4	Explain the explicit MacCormack time marching algorithm for the solution of t	ransient						
	Euler equations in 2-dimensions.		[04]	CO1				
Q 5	What do you mean by initial and boundary conditions? Define various t	types of						
	boundary conditions which are usually encountered in CFD problems.		[04]	CO1				
	SECTION B (40 marks)							
Q 6	In compressible viscous flows the energy equation is completely decoupled f	from the						
	continuity and momentum equations, i.e. the solution of energy equation	n is not						
	required for obtaining pressure and velocity fields. Prove it.		[10]	CO2				

Q 7	Consider the steady state diffusion of a property ϕ in a one-dimensional domain		
	defined in figure. The process is governed by		
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\Gamma \frac{\mathrm{d}\phi}{\mathrm{d}x} \right) + S = 0$		
	where Γ is the diffusion coefficient and <i>S</i> is the source term. Boundary values of ϕ at		
	points A and B are prescribed.		
	Control volume boundaries	[10]	CO3
	Literation of the second secon		
	Explain the several steps involved in discretizing the geometry and the equation to		
	obtain the appropriate solutions of the governing differential equation.		
Q 8	Consider the model equation		
	$\frac{\partial u}{\partial t} = -a\frac{\partial u}{\partial x}$	[10]	CO4
	Following the Lax-Wendroff method, find the value of the dependent variable at the next time step.		
Q 9	Explain with proper example how a pentadiagonal coefficient matrix can be reduced		
	to two sets of tridiagonal coefficient matrix to be solved in sequence.		
	OR		
	Explain in details the philosophy of the SIMPLE method. What is the need for a staggered grid?	[10]	CO3

	SECTION-C (40 marks)		
Q 10	Use each of the following methods to solve the Burgers equation:		
	$rac{\partial u}{\partial t} = -urac{\partial u}{\partial x}$		
	a) Lax-Wendroffb) MacCormack		
	The initial condition is specified as: $u(x,0) = 5.0$ $0.0 \le x \le 20.0$ $u(x,0) = 0.0$ $20.0 < x \le 40.0$		
	Find the solution at intervals of 0.4 sec up to $t = 2.4$ sec. Choose appropriate step size.		
	OR		
	A property \emptyset is transported by means of convection and diffusion through the one-		
	dimensional domain sketched in figure below. The governing equation below;		
	$\frac{d}{dx}(\rho u \emptyset) = \frac{d}{dx} \left(\tau \frac{d\emptyset}{dx}\right)$		
	boundary conditions are $\emptyset_0 = 1$ at $x = 0$ and $\emptyset_L = 0$ at $x = L$. Using five equally	[20]	CO5
	spaced cells (for first two cases) and the central differencing scheme for convection		
	and diffusion calculate the distribution of \emptyset as a function of x for cases:		
	(i) Case 1: $u = 0.1$ m/s, using 5 cells (ii) Case 2: $u = 2.5$ m/s, using 5 cells (iii) Case 3: $u = 2.5$ using 10 cells		
	$\phi = 1 \qquad \qquad$		
	and compare the results with the analytical solution given below. The following data apply: length L = 1.0 m, p = 1.0 kg/m3, $\Gamma = 0.1$ kg/m/s.		
	$\frac{\phi - \phi_0}{\phi_L - \phi_0} = \frac{\exp(\rho u x / \Gamma) - 1}{\exp(\rho u L / \Gamma) - 1}$		

