Name: Enrolment No:						S		
					UNIVERSITY WITH A PURPOSE			
			End Semeste	er Examination,			r	
Course:Fluid flow and heat transfer equipment designSemester:Program:M. Tech (CE+PD)Time 03 hr								
Course Code: CHPD7005 Max. Mark								
			per consists of two sec	ctions. Answer the qu	estions section wise in the			
	Assume suitabl							
				SECTION A				
S. No.							Marks	CO
Q 1	A 20 cm diameter pipe carrying steam is provided with 5 cm thick insulation whose							
		thermal conductivity varies with temperature as $k(T) = 0.062 (1 + 0.362 \times 10^{-2} T)$						
	W/m °C where T is in °C. The temperature at the pipe surface and at the outer surface							
	of the insulation are 275°C and 65°C respectively. Calculate (a) the rate of heat transfer						15	CO2
	per unit meter length of the pipe, (b) the temperature at the mid thickness of the insulation and (a) the temperature gradients at the pipe surface the mid thickness of							
	insulation, and (c) the temperature gradients at the pipe surface, the mid thickness of the insulation, and the outside surface of the insulation. Sketch the temperature profile.							
Q 2	In the convection section of a refinery furnace, tubes are 5 in. OD on 8 $1/4$ in. centers,							
	spaced on equilateral triangular pitch. The flue gases at the row of tubes under							
	consideration are at 1500°F; the tube temperature is 650°F. The flue gases contain						15	005
	10.84% CO ₂ , and \cdot 12.48% H ₂ O by volume; Calculate the radiant-heat transfer between						15	CO5
	the gas and tubes in terms of a coefficient which can be added to the convection-heat-							
	transfer coefficient.							
Q 3	Determine the pinch temperature and the minimum utility requirements for the process							
	set out below. Take the minimum approach temperature as 15°C. Devise a heat exchanger network to achieve maximum energy recovery.							
	Stream Heat capacity, Source Temp., Target Temp.,							
		number	kW/ºC	°C	°C ° °		15	
		1	13.5	180	80	_		
		2	27.0	135	45	-		
		3	53.5	60	100	-		
Q 4	Discuss i	n detail ab	23.5 out fluid moving r	35	120		15	001
Q +	Discussi						15	C01
				SECTION B				
Q 5	175,000 lb/hr of distilled water enters an exchanger at 93°F and leaves at 85°F. The							
	heat will be transferred to 280,000 lb/hr of raw water coming from supply at 75°F and							
	leaving the exchanger at 80°F. A 10 psi pressure drop may be expended on both							
	streams while providing a fouling factor of 0.0005 for distilled water and 0.0015 for raw water when the tube velocity exceeds 6 fps.							
	Available for this service is a $15 \frac{1}{4}$ in. ID exchanger having $160 \frac{3}{4}$ in. OD, 18 BWG						40	CO3
	tubes 16'0" long and laid out on $\frac{15}{16}$ -in. triangular pitch. The bundle is arranged for							
		two passes, and baffles are spaced 12 in. apart.						
1	I LWU Dasst	.s, anu Udl	THES ALC SUBJECT 12					