Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Semester

Max. Marks: 100

Time

: I

:03 hrs

End Semester Examination, December 2019

Programme Name: M. Tech CE + PD

Course Name : Chemical Reactor Engineering and Design

Course Code : CHPD7004

Nos. of page(s) : 02

Instructions: 1) Answer the questions section wise in the answer booklet. 2) Assume suitable data wherever necessary. The notations used here have the usual meanings.

SECTION A (Total Marks: 3 x 10 = 30)

> Attempt <u>*all*</u> the questions. All questions carry equal marks.

S. No.		Marks	СО
Q 1	Explain the Tanks-in-Series model to describe nonideal reactors and calculate conversion.	10	CO2
Q 2	The exothermic reaction $A \rightarrow B + C$ was carried out adiabatically and the following data recorded. $\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	CO1
Q 3	Write down an algorithm for the design of an isothermal CSTR carrying out a liquid phase reaction where the rate of reaction is not given explicitly as a function of conversion.	10	CO2
	SECTION B (Total Marks: 3 x 15 = 45)		
\triangleright	Attempt <i>all</i> the questions. All questions carry equal marks.		
Q 4	a) What are the steps involved in the heterogeneous catalytic reactions?	07 08	CO3
	b) Discuss about the mechanisms involved for the surface reaction to occur after a reactant has been adsorbed onto the surface.		
Q 5	a) Derive an expression for the diffusion of A (concentration profile) through a film to catalyst particle.	10	CO3
	b) Discuss about the regions of mass transfer-limited and reaction-limited reactions.	05	003

Q 6	The irreversible reaction $A \to B$ is taking place in the porous catalyst slab as shown in Fig.1. The reaction is zero order in A. Show that the concentration profile using the symmetry B.C. is $\frac{C_A}{C_{As}} = 1 + \phi_0^2 \left[\left(\frac{z}{L} \right)^2 - 1 \right]$ where $\phi_0^2 = \frac{kL^2}{2D_e C_{As}}$	15	CO4
	SECTION-C (Total Marks: 1 x 25 = 25)		
Q 7	a) A liquid phase reaction $A + B \rightarrow C$ follows an elementary rate law and takes place in a 1 m ³ CSTR, to which the volumetric flow rate is 0.5 m/min and the entering concentration of A is 1 M. When the reaction takes place isothermally at 300 K with an equal molar feed of A and B, the conversion is 20%. When the reaction is carried out adiabatically, the exit temperature is 350K and the conversion is 40%. The heat capacity of A, B and C are 25, 35 and 60 J/mol.K, respectively. What is the rate of heat removal necessary for isothermal operation.	07	CO2
	b) Write down the design equations for a fixed bed reactor along with boundary conditions.	08	CO4
	c) Explain about the bubbling fluidized bed reactor.	10	CO5