Name:							
Name: Enrolment No:							
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES							
End Semester Examination, December 2019							
	Course:Mathematical Physics-I (PHYS 1011)Semester: IProgramme: BSc Physics (H)Time: 03 hrs.						
e	arks: 100	5.					
Number of pages: 03							
Instruct							
	SECTION A						
	All questions are compulsory.	T					
SN	Statement of Question	Marks	CO				
Q1	Estimate the Wronskian corresponding to the following differential equation:						
	$(D^2 - 2D + 3)y = x^3 + \cos x$	4	CO1				
	where $D = \frac{d}{dx}$						
Q2	Find the directional derivative of the following scalar function						
	$f = x^2 - y^2 + 2z^2$	4	CO3				
02	at the point P (1,-2,-1) in the direction of the line PQ where Q is the point (5,0,4).		~ ~ ~				
Q3	Define Dirac Delta function and state its properties.	4	CO2				
Q4	Find $\vec{\nabla} \cdot \vec{F}$, where \vec{F} is the gradient of the following scalar function	4	CO3				
05	$u = x^3 + y^3 + z^3 - 3xyz$						
Q5	If						
	$\frac{d^2\vec{P}}{dt^2} = 6t\hat{\imath} - 12t\hat{\jmath} + 4\cos t\hat{k}$	4	CO4				
		-	001				
	Find \vec{P} if $\frac{d\vec{P}}{dt} = -\hat{\imath} - 3\hat{k}$ at $t = 0$ and $\vec{P} = 2\hat{\imath} + \hat{\jmath}$ at $t = 0$						
SECTION B							
	Questions 6-8 are compulsory. There is an internal choice for the question nun	ıber 9.					
Q6	Solve the following 2^{nd} order linear differential equation with constant coefficient						
	(find both general solution & particular integral): $d^2 u = du$	10	CO1				
	$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = e^{-x}\sin x + xe^{3x}$						
Q7	a) Find the divergence and curl of the following vector field (in cylindrical						
	coordinates):						
	$\vec{Q}(\rho,\varphi,z) = \rho \sin \varphi \hat{\rho} + \rho^2 z \hat{\varphi} + z \cos \varphi \hat{z}$						
	where $\hat{\rho}$, $\hat{\varphi}$ and \hat{z} are unit vectors in cylindrical coordinates.	5+5	CO3				
	b) What is the physical significance of curl of a vector field? Evaluate curl of	5+5					
	the following vector field \vec{t}						
	$\vec{A} = yz\hat{\imath} + 4xy\hat{\jmath} + y\hat{k}$						
Q8	at (1,-2,3). Solve the following differential equation:						
X 0	$(xy^2 - e^{1/x^3})dx - x^2ydy = 0$	10	CO2				

Q9	What do you mean by the flux of a vector field through a closed surface?		
	Evaluate the flux of a vector field \vec{A} through a surface S		
	$\iint_{S} \vec{A} \cdot \hat{n} ds$		
	where $\vec{A} = 18z\hat{\imath} - 12\hat{\jmath} + 3y\hat{k}$, <i>S</i> is that part of the plane $2x + 3y + 6z = 12$ which is located in the first octant, and \hat{n} is the unit normal to the surface <i>S</i> (see the figure below):	10	CO4
	OR		
Q9	State Stokes' theorem for a vector field by clearly defining each terms in the theorem.	10	CO4
	Evaluate the line integral of \vec{F} ($\oint \vec{F} \cdot \vec{dr}$) on a closed surface <i>C</i> in the <i>xy</i> plane, <i>x</i> =	10	004
	$2 \cos t, y = 3 \sin t$ from $t = 0$ to $t = 2\pi$. The vector field \vec{F} is given as $\vec{F} = (x - 3y)\hat{i} + (y - 2x)\hat{j}$		
	SECTION-C	L	I
010	Q10 is compulsory. There is an internal choice for Q11.		1
Q10	 a) Define orthogonal curvilinear coordinate system. If (u₁, u₁, u₃) is a set of curvilinear coordinates, write an expression for the arc length in this coordinate system. b) When do we call a vector irrotational? Find the constants <i>a</i>, <i>b</i>, <i>c</i> so that the vector 	5+6+9	CO3+ CO3+ CO1
	 vector \$\vec{V} = (x + 2y + az)\hlocklet + (bx - 3y - z)\hlocklet + (4x + cy + 2z)\hlocklet is irrotational. c) Find the general solution of the following 1st order linear differential equation: 		
	$x\log x\frac{dy}{dx} + y = \log x^2$		

Q11	a) Write the statement of Divergence theorem and discuss its physical significance.		
	Using Divergence theorem, evaluate		
	$\iiint\limits_V ec{ abla} \cdot ec{F} \; dV$		
	where $\vec{F} = 4xz\hat{\imath} - y^2\hat{\jmath} + yz\hat{k}$ and <i>V</i> is the volume of the cube bound by $x = 0, x = 1, y = 0, y = 1, z = 0, z = 1$.	10+10	CO4
	b) Verify Stokes' theorem for		
	$\vec{A} = (2x - y)\hat{\imath} - yz^2\hat{\jmath} - y^2z\hat{k}$		
	where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its		
	boundary [Hint: Boundary C of S is a circle of radius one and center as origin in xy plane].		
	OR		
Q11	a) Evaluate		
	$\iint\limits_{S} (\vec{\nabla} \times \vec{A}) \cdot \hat{n} ds$		
	where $\vec{A} = (x^2 + y - 4)\hat{\imath} + 3xy\hat{\jmath} + (2xz + z^2)\hat{k}$ and S is the surface of a	10+10	CO4
	 hemisphere x² + y² + z² = 16 above the xy plane. b) Find the work done in moving a particle in the force field \$\vec{F}\$ = 2x³\$+ 		
	$(2z^2x - yz)\hat{j} + xz\hat{k}$ along the curve defined by $x^2 = 4y$, $3x^3 = 8z$ from $x = 0$ to $x = 2$.		