| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
| Course: Mathematical Physics-I (PHYS 1011) Semeste <br> Programme: BSc Physics (H) Time: 03 <br> Max. Marks: 100  <br> Number of pages: 03  <br> Instructions:  |  |  |  |
| SECTION A <br> All questions are compulsory. |  |  |  |
| SN | Statement of Question | Marks | CO |
| Q1 | Estimate the Wronskian corresponding to the following differential equation: $\left(D^{2}-2 D+3\right) y=x^{3}+\cos x$ <br> where $D=\frac{d}{d x}$ | 4 | CO1 |
| Q2 | Find the directional derivative of the following scalar function $f=x^{2}-y^{2}+2 z^{2}$ <br> at the point $\mathrm{P}(1,-2,-1)$ in the direction of the line PQ where Q is the point $(5,0,4)$. | 4 | CO3 |
| Q3 | Define Dirac Delta function and state its properties. | 4 | CO 2 |
| Q4 | Find $\vec{\nabla} \cdot \vec{F}$, where $\vec{F}$ is the gradient of the following scalar function $u=x^{3}+y^{3}+z^{3}-3 x y z$ | 4 | CO3 |
| Q5 | If $\frac{d^{2} \vec{P}}{d t^{2}}=6 t \hat{\imath}-12 t \hat{\jmath}+4 \cos t \hat{k}$ <br> Find $\vec{P}$ if $\frac{d \vec{P}}{d t}=-\hat{\imath}-3 \hat{k}$ at $t=0$ and $\vec{P}=2 \hat{\imath}+\hat{\jmath}$ at $t=0$ | 4 | CO4 |
| SECTION B <br> Questions 6-8 are compulsory. There is an internal choice for the question number 9. |  |  |  |
| Q6 | Solve the following $2^{\text {nd }}$ order linear differential equation with constant coefficient (find both general solution \& particular integral): $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+3 y=e^{-x} \sin x+x e^{3 x}$ | 10 | CO1 |
| Q7 | a) Find the divergence and curl of the following vector field (in cylindrical coordinates): $\vec{Q}(\rho, \varphi, z)=\rho \sin \varphi \hat{\rho}+\rho^{2} z \hat{\varphi}+z \cos \varphi \hat{z}$ <br> where $\hat{\rho}, \hat{\varphi}$ and $\hat{z}$ are unit vectors in cylindrical coordinates. <br> b) What is the physical significance of curl of a vector field? Evaluate curl of the following vector field $\vec{A}=y z \hat{\imath}+4 x y \hat{\jmath}+y \hat{k}$ <br> at $(1,-2,3)$. | 5+5 | CO 3 |
| Q8 | Solve the following differential equation: $\left(x y^{2}-e^{1 / x^{3}}\right) d x-x^{2} y d y=0$ | 10 | CO 2 |


| Q9 | What do you mean by the flux of a vector field through a closed surface? <br> Evaluate the flux of a vector field $\vec{A}$ through a surface $S$ $\iint_{S} \vec{A} \cdot \hat{n} d s$ <br> where $\vec{A}=18 z \hat{\imath}-12 \hat{\jmath}+3 y \hat{k}, S$ is that part of the plane $2 x+3 y+6 z=12$ which is located in the first octant, and $\hat{n}$ is the unit normal to the surface $S$ (see the figure below): | 10 | $\mathrm{CO4}$ |
| :---: | :---: | :---: | :---: |
| Q9 | State Stokes' theorem for a vector field by clearly defining each terms in the theorem. <br> Evaluate the line integral of $\vec{F}(\oint \vec{F} \cdot \overrightarrow{d r})$ on a closed surface $C$ in the $x y$ plane, $x=$ $2 \cos t, y=3 \sin t$ from $t=0$ to $t=2 \pi$. The vector field $\vec{F}$ is given as $\vec{F}=(x-3 y) \hat{\imath}+(y-2 x) \hat{\jmath}$ | 10 | $\mathrm{CO4}$ |
| SECTION-C <br> Q10 is compulsory. There is an internal choice for Q11. |  |  |  |
| Q10 | a) Define orthogonal curvilinear coordinate system. If ( $u_{1}, u_{1}, u_{3}$ ) is a set of curvilinear coordinates, write an expression for the arc length in this coordinate system. <br> b) When do we call a vector irrotational? Find the constants $a, b, c$ so that the vector $\vec{V}=(x+2 y+a z) \hat{\imath}+(b x-3 y-z) \hat{\jmath}+(4 x+c y+2 z) \hat{k}$ <br> is irrotational. <br> c) Find the general solution of the following $1^{\text {st }}$ order linear differential equation: $x \log x \frac{d y}{d x}+y=\log x^{2}$ | 5+6+9 | $\begin{gathered} \mathrm{CO3+} \\ \mathrm{CO3+} \\ \mathrm{CO1} \end{gathered}$ |


| Q11 | a) Write the statement of Divergence theorem and discuss its physical significance. <br> Using Divergence theorem, evaluate $\iiint_{V} \vec{\nabla} \cdot \vec{F} d V$ <br> where $\vec{F}=4 x z \hat{\imath}-y^{2} \hat{\jmath}+y z \hat{k}$ and $V$ is the volume of the cube bound by $x=0, x=1, y=0, y=1, z=0, z=1$. <br> b) Verify Stokes' theorem for $\vec{A}=(2 x-y) \hat{\imath}-y z^{2} \hat{\jmath}-y^{2} z \hat{k}$ <br> where $S$ is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and $C$ is its boundary [Hint: Boundary $C$ of $S$ is a circle of radius one and center as origin in $x y$ plane]. | 10+10 | CO4 |
| :---: | :---: | :---: | :---: |
|  | OR |  |  |
| Q11 | a) Evaluate $\iint_{S}(\vec{\nabla} \times \vec{A}) \cdot \hat{n} d s$ <br> where $\vec{A}=\left(x^{2}+y-4\right) \hat{\imath}+3 x y \hat{\jmath}+\left(2 x z+z^{2}\right) \hat{k}$ and $S$ is the surface of a hemisphere $x^{2}+y^{2}+z^{2}=16$ above the $x y$ plane. <br> b) Find the work done in moving a particle in the force field $\vec{F}=2 x^{3} \hat{\imath}+$ $\left(2 z^{2} x-y z\right) \hat{\jmath}+x z \hat{k}$ along the curve defined by $x^{2}=4 y, 3 x^{3}=8 z$ from $x=0$ to $x=2$. | 10+10 | CO4 |

