Name: Enrolme	olment No:			
	UNIVERSITY OF PETROLEUM AND ENERGY STUI	DIES		
Due aver	End Semester Examination, December 2019			
Programme Name:B.Sc. (H) PhysicsSemesterCourse Name:MechanicsTime			er : I : 03 hrs	
	Course Code : PHYS1012 Max. M			
	page(s) : 2			
	SECTION A (Attempt all the questions)			
S. No.		Marks	СО	
Q 1	State the fundamental postulates of special theory of relativity.	4	C01	
Q 2	Define Poisson's ratio. What are its theoretical limits?	4	CO2	
Q 3	A bullet of mass 10 gm is fired with a speed of 1000 m/s from a freely hanging gur of mass 2 kg. Calculate the recoil velocity of the gun.	4	CO2	
Q 4	Show that the curl of a conservative force is zero.	4	CO3	
Q 5	Explain moment of inertia. On what factors does it depend?	4	CO3	
	SECTION B (Attempt all the questions. Question 9 has internal choice)			
Q 6	Define torque and angular momentum of a particle. Show that for a system of			
	particles;	10	CO1	
	$ au^{ext} = \frac{dJ}{dt}$	10	COI	
0.7	With suitable discrementation state Kenler's law of planetery motion			
Q 7	With suitable diagram, state Kepler's law of planetary motion. Show that the time period of revolution of the planet in an elliptical orbit is;			
		10	C01	
	$T = \sqrt{\frac{4\pi^2 m^2 l a^3}{J^2}}$	10	COI	
	Where a is the semi-major axis and l is the semi-latus rectum of ellipse.			
Q 8	State and prove the theorem of parallel axes for moment of inertia.	10	CO3	
Q 9	Find the maximum length of a wire that can be suspended without breaking. Its		000	
	breaking stress and density are equal to $7.2 \times 10^8 N/m^2$ and $7.8 \times 10^3 kg/m^3$ respectively.			
	Or	10	CO4	
	A fly wheel, whose mass is 500 kg and diameter 2 meters, makes 500 revolutions in one minute. Assuming that the whole mass is concentrated on its rim, determine the angular velocity, energy and moment of inertia of the flywheel.			

	SECTION-C (Attempt all the questions. Question 11 has internal choice)		
Q 10 (a)	Describe the working principle of a rocket. Establish the following relation for a rocket; $v = v_0 + u \log_e \frac{M_0}{M}$ where, v_0 is the initial velocity of the rocket, u is the exhaust velocity of the gases relative to the rocket and M_0 is the initial mass.	10	CO2
Q 10 (b)	A particle executes S.H.M. along a straight line and its velocity when passing through point 3 cm and 4 cm from the centre of its path is 16 cm/s and 12 cm/s respectively. Find the amplitude and time period of the motion.	10	CO2
Q 11 (a)	Write down Lorentz transformation equations and hence explain time dilation.	10	CO3
Q 11 (b)	Explain Lorentz Fitzgerald contraction. How fast would a rocket have to go relative to an observer for its length to be contracted to 99% of its length at rest?	10	CO3
	Or		
Q 11 (a)	Describe the Michelson-Morley experiment and discuss the importance of negative results obtained from it.	10	CO3
Q 11 (b)	Calculate the fringe shift in Michelson-Morley experiment. Given $l = 10 m$, $v = 3 \times 10^4 m/s$ and $\lambda = 6.0 \times 10^{-7} m$. Where, <i>l</i> is the separation between two mirrors and <i>v</i> is the speed of apparatus.	10	CO3