Name: Enrolment No:			
Progra Cours Cours Nos. 0		$\begin{aligned} \text { r } & : \text { I } \\ & : 3 \mathrm{Hrs} \\ \text { arks } & : 100 \end{aligned}$	
SECTION A			
S. No.		Marks	CO
Q 1	Prove that the matrix $\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right]$ is unitary.	4	CO1
Q2	Find the rank of matrix $A=\left[\begin{array}{ccc}-1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 2\end{array}\right]$.	4	CO2
Q3	Prove that $X_{1}=(1,2,3), X_{2}=(3,-2,1)$ and $X_{3}=(1,-6,-5)$ form a linearly dependent system.	4	CO3
Q4	Obtain the eigen value of A^{3} where $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right]$.	4	CO4
Q5	Find the characteristic equation of the matrix $A=\left[\begin{array}{ccc}4 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 1\end{array}\right]$.	4	CO4
SECTION B			
Q6	If $A=\left[\begin{array}{ccc}2+i & 3 & -1+3 i \\ -5 & i & 4-2 i\end{array}\right]$, verify that $A^{*} A$ is a Hermitian where A^{*} is the conjugate transpose of A.	10	CO1
Q7	Show that the equations $\begin{array}{cc} -2 x+y+z & =a \\ x-2 y+z & =b \\ x+y-2 z & =c \end{array}$ have no solution unless $a+b+c=0$. In which case they have infinitely many solutions? Find these solutions when $a=1, b=1$ and $c=-2$.	10	CO2
Q8	Find the minimal polynomial of the following block matrix: $\left[\begin{array}{ccc} A_{1} & 0 & 0 \\ 0 & A_{2} & 0 \\ 0 & 0 & A_{3} \end{array}\right]$ where $A_{1}=\left[\begin{array}{ll}2 & 5 \\ 0 & 2\end{array}\right], A_{2}=\left[\begin{array}{ll}4 & 2 \\ 3 & 5\end{array}\right]$ and $A_{3}=[7]$	10	CO5

Q9	Verify that the matrices $X=\left[\begin{array}{lll}0 & h & g \\ h & 0 & f \\ g & f & 0\end{array}\right], Y=\left[\begin{array}{lll}0 & f & h \\ f & 0 & g \\ h & g & 0\end{array}\right]$ and $Z=\left[\begin{array}{lll}0 & g & f \\ g & 0 & h \\ f & h & 0\end{array}\right]$ have the same characteristic equation. OR Find the modal matrix P that diagonalizes matrix $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 3\end{array}\right]$ through similarity transformation $P^{-1} A P$.	10	CO4
SECTION-C			
Q10	Find the characteristic equation of the matrix $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$ and hence compute inverse of the A. Also, find the matrix represented by $A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-$ $5 A^{3}+8 A^{2}-2 A+I$.	20	CO4
Q11	Solve the following system of equations by Crout's method: $\begin{array}{cc} 4 x+y+z & =4 \\ x+4 y-2 z & =4 \\ 3 x+2 y-4 z & =6 \end{array}$ OR Solve the following system of equations using Choleski's method: $\begin{array}{cc} 4 x-y-z & =3 \\ -x+4 y-3 z & =-0.5 \\ -x-3 y+5 z & =0 \end{array}$	20	CO3

