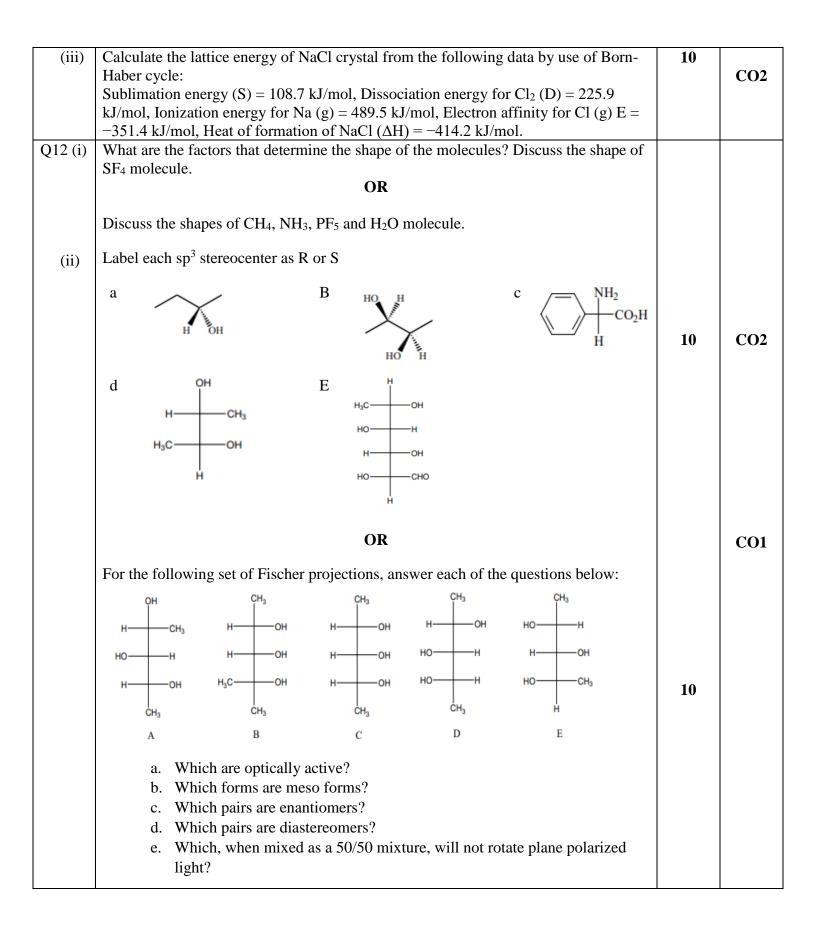
Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES


End Semester Examination, December 2019

Course: Atomic Structure, bonding, general organic chemistry... (Elective paper) Program: B.Sc (Hons) Physics / Mathematics Course Code: CHEM 1007 Semester: I Time 03 hrs. Max. Marks: 100

Instructions: Attempt all the questions. Internal choices are given for question number 10 and 12. SECTION A

S. No.		Marks	CO
Q 1	Draw the plot of ψ^2 , and r for 1s, 2s and 2p orbitals.	4	CO1
Q 2	Which of the following orbitals are not possible? 1p, 2s, 2p, 3f Give reasons.	4	CO1
Q 3	What is radial probability distribution? How do you arrive at the shape of 1s orbital using radial probability distribution?	4	CO2
Q 4	The pH of 0.950 M solution of NH_3 is 11.612. Determine K_b for NH_3 .	4	CO1
Q 5	Predict if the following compounds exhibit geometrical isomerism. If yes, draw the structures a. 2,3-dimethyl-2-butene b. 2-Hexene	4	CO1
	SECTION B		
Q 6	Calculate the lattice energy of sodium chloride (in kJ/mol) from the following data $A = 1.75$, $r_0 = 2.8 \text{ Å}$, $n = 9$, $N = 6.023 \times 10^{23}$ and $e = 4.8 \times 10^{-10}$ esu.	8	CO2
Q 7 (i) (ii)	On the basis of MO theory, explain why N_2 molecule is diamagnetic while O_2 is paramagnetic? Describe the shape of BF ₃ based upon the hybridization.	8	CO2
Q 8 (i)	A compound C_4H_8 (A) reacts with Br_2 to form 'B', which on reaction with two equivalents of NaNH ₂ forms 'C'. C reacts with ammonical Cu_2Cl_2 to form red precipitates. Deduce the structure and names of compounds 'A', 'B', 'C' and complete the reaction series.		CO3
(ii)	Match the following compounds with K _a values and support your answer with proper justification	3+5	CO1

		Compounds		K _a values		
	А	p-methyl benzoic acid	i	3.3 x 10 ⁻⁵		
	В	p-methoxy benzoic acid	ii	30.6 x 10 ⁻⁵		
	С	p-chloro benzoic acid	iii	6.3 x 10 ⁻⁵		
	D	p-nitro benzoic acid	iv	6.9 x 10 ⁻⁵		
	Е	benzoic acid	V	4.3 x 10 ⁻⁵		
Q 9						
	a d	Br O O Br Br	ноос		8	CO1
Q 10	A radi veloci energy Discus	8	CO1			
Q11 (i)	SECTION-C Classify the compounds into the category of aromatic, non-aromatic and anti-					CO1
	aroma	tic with reason:	́/			
	ĺ,					
(ii)	a.	happens when Propene reacts with BH ₃ follow H ₂ O ₂ . But-2-yne reacts with Lindlar c	-	tion with water in the presence of	5	CO3

