Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019 Course: Atomic Structure, bonding, general organic chemistry... (Elective paper) Semester: I Program: B.Sc (Hons) Physics / Mathematics Time 03 hrs. Course Code: CHEM 1007 Max. Marks: 100 Instructions: Attempt all the questions. Internal choices are given for question number $\mathbf{1 0}$ and $\mathbf{1 2 .}$			
SECTION A			
S. No.		Marks	CO
Q 1	Draw the plot of ψ^{2}, and r for 1s, 2s and 2p orbitals.	4	CO1
Q 2	Which of the following orbitals are not possible? 1p, 2s, 2p, 3f Give reasons.	4	CO1
Q 3	What is radial probability distribution? How do you arrive at the shape of 1s orbital using radial probability distribution?	4	CO 2
Q 4	The pH of 0.950 M solution of NH_{3} is 11.612. Determine K_{b} for NH_{3}.	4	$\mathrm{CO1}$
Q 5	Predict if the following compounds exhibit geometrical isomerism. If yes, draw the structures a. 2,3-dimethyl-2-butene b. 2-Hexene	4	$\mathrm{CO1}$
SECTION B			
Q 6	Calculate the lattice energy of sodium chloride (in $\mathrm{kJ} / \mathrm{mol}$) from the following data $\mathrm{A}=1.75, \mathrm{r}_{0}=2.8 \dot{\mathrm{~A}}, \mathrm{n}=9, \mathrm{~N}=6.023 \times 10^{23}$ and $\mathrm{e}=4.8 \times 10^{-10} \mathrm{esu}$.	8	CO 2
Q7 (i) (ii)	On the basis of MO theory, explain why N_{2} molecule is diamagnetic while O_{2} is paramagnetic? Describe the shape of BF_{3} based upon the hybridization.	8	CO 2
Q8 (i) (ii)	A compound $\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{~A})$ reacts with Br_{2} to form ' B ', which on reaction with two equivalents of NaNH_{2} forms ' C '. C reacts with ammonical $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ to form red precipitates. Deduce the structure and names of compounds ' A ', ' B , ' C ' and complete the reaction series. Match the following compounds with K_{a} values and support your answer with proper justification	3+5	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{CO1} \end{aligned}$

