

Q8.	Consider the vectors $\vec{a}=\hat{\imath}-\hat{\jmath}+\hat{k}, \vec{b}=2 \hat{\imath}+\hat{\jmath}-2 \hat{k}$ and $\vec{c}=-\hat{\imath}+2 \hat{\jmath}-\hat{k}$. Verify that $(\vec{a} \times \vec{b}) \cdot \vec{c}=(\vec{b} \times \vec{c}) \cdot \vec{a}$, and find the volume of the parallelepiped determined by \vec{a}, \vec{b} and \vec{c}.	[10]	CO4
Q9.	Using first derivative test find two positive numbers whose sum is 20 and whose product is as large as possible. OR A rectangle is to be inscribed in a semicircle of radius 2 . What is the largest area of the rectangle can have, and what are its dimensions?	[10]	CO5
SECTION C (Q10 is compulsory and Q11A and Q11B have internal choices)			
Q10A.	State and prove Kepler's second law (the equal area law) of planetary motion.	[10]	CO5
Q10B.	Without finding \vec{T} and \vec{N}, write the acceleration \vec{a} of the motion $\vec{r}(t)=(2 t+3) \hat{\imath}+$ $\left(t^{2}-1\right) \hat{\jmath}$, in form of $\vec{a}=a_{T} \vec{T}+a_{N} \vec{N}$, where a_{T} and a_{N} are the tangential and normal components of acceleration, respectively.	[10]	CO4
Q11A.	Solve the following differential equation to find the position vector $\vec{r}(t)$ of a particle. $\frac{d^{2} \vec{r}}{d t^{2}}=-(\hat{\imath}+\hat{\jmath}+\hat{k})$ with initial conditions $\vec{r}(0)=10 \hat{\imath}+10 \hat{\jmath}+10 \hat{k}$, and $\left.\frac{d \vec{r}}{d t}\right\|_{t=0}=\overrightarrow{0}$. OR Suppose that $\overrightarrow{r_{1}}(t)=f_{1}(t) \hat{\imath}+f_{2}(t) \hat{\jmath}+f_{3}(t) \hat{k}, \overrightarrow{r_{2}}(t)=g_{1}(t) \hat{\imath}+g_{2}(t) \hat{\jmath}+g_{3}(t) \hat{k}$, $\lim _{t \rightarrow t_{0}} \overrightarrow{r_{1}}(t)=\vec{A}$ and $\lim _{t \rightarrow t_{0}} \overrightarrow{r_{2}}(t)=\vec{B}$. Use the determinant formula for cross products and the limit product rule for scalar functions to show that $\lim _{t \rightarrow t_{0}}\left(\overrightarrow{r_{1}}(t) \times \overrightarrow{r_{2}}(t)\right)=\vec{A} \times \vec{B}$	[10]	CO4
Q11B.	Find the volume of the solid generated by revolving the region bounded by the curves $y=x^{2}, y=0$ and $x=2$ about x-axis. OR Find the area of the surface generated by revolving the curve $x=\frac{y^{3}}{3}, 0 \leq y \leq 1$ about y-axis.	[10]	CO 3

