Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Algebra Program: B.Sc. (Hons.) Mathematics Course Code: MATH 1032 Semester: I Time : 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory.

SECTION A

S. No.		Marks	CO
Q1	Represent the complex number $z = (1 - \sqrt{3}i)^3$ in polar coordinates r and θ .	4	C01
Q2	Prove or disapprove the statement : An odd degree polynomial $f: \mathbb{R} \to \mathbb{R}$ is always an onto function	4	CO2
Q3	Show that the set of reals \mathbb{R} is cardinally equivalent to a subset (0,1) of it.	4	CO2
Q4	Suppose ω and ω^2 are the cube roots of unity other than 1. Find the trace of the matrix $ \begin{pmatrix} 1 & 3 & 2 \\ 0 & \omega & 3 \\ 0 & 0 & \omega^2 \end{pmatrix}^{2019} $	4	CO4
Q5	Let $M_{2\times 2}(\mathbb{R})$ be the vector space of all 2×2 real matrices. Consider the subspaces $W_1 = \left\{ \begin{pmatrix} a & -a \\ c & d \end{pmatrix} : a, c, d \in \mathbb{R} \right\}$ and $W_2 = \left\{ \begin{pmatrix} a & b \\ -a & d \end{pmatrix} : a, b, d \in \mathbb{R} \right\}$ Find the dimensions of subspaces $W_1 \cap W_2$ and $W_1 + W_2$ respectively.	4	CO5
	SECTION B		
Q6	Prove that $z = x + iy$, $i = \sqrt{-1}$ is either real or purely imaginary if and only if $(\overline{z})^2 = z^2$.	10	C01
Q7	Consider the set $A = \{1,2,3, \dots, 9,10\}$ and \approx be the relation on $A \times A$ defined by $(a,b) \approx (c,d)$ whenever $ad = bc$ Prove that \approx is an equivalence relation. Find [(2,4)] i.e. the equivalence class of (2,4).	10	CO2
Q8	Use the principle of mathematical induction to prove: $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta, n \in \mathbb{N}$	10	CO3

	Prove that		
Q9	$\bigcap_{i=1}^{n} W_{i}$ is a subspace of a vector space V over the field F, where $W_{i}, 1 \le i \le n$ are subspaces of $V(F)$.	10	CO3
	SECTION-C		1
Q 10	 a. Suppose N(A) denotes the dimension of the null space of matrix A = (2 2 -6 8) 3 3 -9 8) 1 1 x 4). For what values of x, N(A) is minimum? b. Consider the following subspace of R³: W = {(x, y, z) ∈ R³ 2x + 2y + z = 0, 3x + 3y - 2z = 0, x + y - 3z = 0} Find a basis and the dimension of W. 	10 + 10	CO4
Q11	Let V be the real vector space of all polynomials from \mathbb{R} into \mathbb{R} of degree 2 or less. Let t be a fixed real number and define $g_1(x) = 1, g_2(x) = (x + t), g_3(x) = (x + t)^2$ such that $\mathcal{B} = \{g_1, g_2, g_3\}$ is a basis for V. Find $[f(x)]_{\mathcal{B}}$ i.e. the coordinates of $f(x) = c_0 + c_1 x + c_2 x^2$ in this ordered basis \mathcal{B} . OR Let V be the set of 2×2 matrices $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ with complex entries such that $a_{11} + a_{22} = 0$. Let W be the set of matrices in V with $a_{12} + \overline{a_{21}} = 0$. Prove that : a. V is a vector space over \mathbb{C} . b. W is a vector space over \mathbb{R} . c. Is W is a vector space over \mathbb{C} ? Give reason to support your answer.	20	CO5