Name: Enrolment No:			
Course: Program Course Instructi	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019 Algebra B.Sc. (Hons.) Mathematics Code: MATH 1032 ions: All questions are compulsory.	Semeste Time : Max. Mar	$\begin{aligned} & \text { I } \\ & \text { hrs. } \\ & \text { ks: } 100 \end{aligned}$
SECTION A			
S. No.		Marks	CO
Q1	Represent the complex number $z=(1-\sqrt{3} i)^{3}$ in polar coordinates r and θ.	4	CO1
Q2	Prove or disapprove the statement : An odd degree polynomial $f: \mathbb{R} \rightarrow \mathbb{R}$ is always an onto function	4	$\mathrm{CO2}$
Q3	Show that the set of reals \mathbb{R} is cardinally equivalent to a subset (0,1) of it.	4	CO2
Q4	Suppose ω and ω^{2} are the cube roots of unity other than 1 . Find the trace of the matrix $\left(\begin{array}{ccc} 1 & 3 & 2 \\ 0 & \omega & 3 \\ 0 & 0 & \omega^{2} \end{array}\right)^{2019}$	4	CO4
Q5	Let $M_{2 \times 2}(\mathbb{R})$ be the vector space of all 2×2 real matrices. Consider the subspaces $W_{1}=\left\{\left(\begin{array}{cc} a & -a \\ c & d \end{array}\right): a, c, d \in \mathbb{R}\right\} \text { and } W_{2}=\left\{\left(\begin{array}{cc} a & b \\ -a & d \end{array}\right): a, b, d \in \mathbb{R}\right\}$ Find the dimensions of subspaces $W_{1} \cap W_{2}$ and $W_{1}+W_{2}$ respectively.	4	CO5
SECTION B			
Q6	Prove that $z=x+i y, i=\sqrt{-1}$ is either real or purely imaginary if and only if $(\bar{z})^{2}=z^{2}$ 。	10	CO1
Q7	Consider the set $A=\{1,2,3, \ldots \ldots, 9,10\}$ and \approx be the relation on $A \times A$ defined by $(a, b) \approx(c, d)$ whenever $a d=b c$ Prove that \approx is an equivalence relation. Find $[(2,4)]$ i.e. the equivalence class of $(2,4)$.	10	CO2
Q8	Use the principle of mathematical induction to prove: $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta, n \in \mathbb{N}$	10	CO3

Q9	Prove that $\bigcap_{i=1}^{n} W_{i}$ is a subspace of a vector space V over the field F, where $W_{i}, 1 \leq i \leq n$ are subspaces of $V(F)$.	10	CO 3
SECTION-C			
Q 10	a. Suppose $\mathcal{N}(A)$ denotes the dimension of the null space of matrix $A=\left(\begin{array}{cccc} 2 & 2 & -6 & 8 \\ 3 & 3 & -9 & 8 \\ 1 & 1 & x & 4 \end{array}\right)$ For what values of $x, \mathcal{N}(A)$ is minimum? b. Consider the following subspace of \mathbb{R}^{3} : $W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 2 x+2 y+z=0,3 x+3 y-2 z=0, x+y-3 z=0\right\}$ Find a basis and the dimension of W.	$\begin{gathered} 10 \\ + \\ 10 \end{gathered}$	CO4
Q11	Let V be the real vector space of all polynomials from \mathbb{R} into \mathbb{R} of degree 2 or less. Let t be a fixed real number and define $g_{1}(x)=1, g_{2}(x)=(x+t), g_{3}(x)=$ $(x+t)^{2}$ such that $\mathcal{B}=\left\{g_{1}, g_{2}, g_{3}\right\}$ is a basis for V. Find $[f(x)]_{\mathcal{B}}$ i.e. the coordinates of $f(x)=c_{0}+c_{1} x+c_{2} x^{2}$ in this ordered basis \mathcal{B}. OR Let V be the set of 2×2 matrices $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ with complex entries such that $a_{11}+$ $a_{22}=0$. Let W be the set of matrices in V with $a_{12}+\overline{a_{21}}=0$. Prove that : a. V is a vector space over \mathbb{C}. b. W is a vector space over \mathbb{R}. c. Is W is a vector space over \mathbb{C} ? Give reason to support your answer.	20	CO5

